
Volume Rendering For GamesVolume Rendering For Games

Simon GreenSimon Green
NVIDIA CorporationNVIDIA Corporation



OverviewOverview

•• Why use volume rendering?Why use volume rendering?
•• Volume rendering using slicesVolume rendering using slices
•• Volume rendering using ray marchingVolume rendering using ray marching
•• RayRay--box intersectionbox intersection
•• Procedural volumesProcedural volumes
•• ConclusionConclusion



Why use Volume Rendering?Why use Volume Rendering?

•• Many phenomena in the real world Many phenomena in the real world 
cannot be easily represented using cannot be easily represented using 
geometric surfacesgeometric surfaces
–– Clouds, smoke, fire, explosionsClouds, smoke, fire, explosions

•• The appearance of these phenomena is The appearance of these phenomena is 
caused by the cumulative effect of light caused by the cumulative effect of light 
emitted, absorbed and scattered by a emitted, absorbed and scattered by a 
huge number of tiny particles huge number of tiny particles 



Particle SystemsParticle Systems

•• Volumetric effects usually approximated Volumetric effects usually approximated 
in games today using particle systems in games today using particle systems 
with point sprites with point sprites 

•• Problems with particle systemsProblems with particle systems
–– obvious intersections between sprites and obvious intersections between sprites and 

scene geometryscene geometry
•• can be improved with depth replacecan be improved with depth replace

–– accurate lighting, shadowing is difficultaccurate lighting, shadowing is difficult
–– texture movies use a lot of memorytexture movies use a lot of memory



Particle System in Particle System in ““VulcanVulcan””



Volume RenderingVolume Rendering

•• Volume rendering simulates effect of Volume rendering simulates effect of 
light emitted, absorbed and scattered light emitted, absorbed and scattered 
by large number of tiny particles in by large number of tiny particles in 
volumevolume

•• Volume is represented as a uniform 3D Volume is represented as a uniform 3D 
array of samplesarray of samples
–– can be precan be pre--computed, or proceduralcomputed, or procedural

•• Final image is created by sampling the Final image is created by sampling the 
volume along viewing rays and volume along viewing rays and 
accumulating optical propertiesaccumulating optical properties



Volume Rendering using SlicesVolume Rendering using Slices

•• Volume is sampled using proxy Volume is sampled using proxy 
geometrygeometry

•• Polygons slice through the volume Polygons slice through the volume 
perpendicular to the viewing directionperpendicular to the viewing direction

•• Number of slices determines quality of Number of slices determines quality of 
resulting imageresulting image

•• Slices usually drawn back to frontSlices usually drawn back to front
•• Compositing performed using alpha Compositing performed using alpha 

blendingblending
–– ““overover”” operator: operator: CC’’ii = = CiCi + (1 + (1 –– Ai) CAi) C’’i+1i+1
–– uses a lot of framebuffer bandwidthuses a lot of framebuffer bandwidth



Volume Rendering using SlicesVolume Rendering using Slices

eye

bounding volume

slices



Volume Rendering by Ray MarchingVolume Rendering by Ray Marching

•• Calculate intersection between view Calculate intersection between view 
ray and bounding volumeray and bounding volume

•• March along ray between far and near March along ray between far and near 
intersection points, accumulating color intersection points, accumulating color 
and opacityand opacity
–– Look up in 3D texture, or evaluate Look up in 3D texture, or evaluate 

procedural function at each sampleprocedural function at each sample
–– Can use uniform of adaptive step sizesCan use uniform of adaptive step sizes



Ray MarchingRay Marching

bounding volume

Pfar

Pnear

step

eye



Ray Marching CodeRay Marching Code
float4 float4 RayMarchPS(RayRayMarchPS(Ray eyerayeyeray : TEXCOORD0,: TEXCOORD0,

uniform uniform intint steps) : COLORsteps) : COLOR
{{

eyeray.deyeray.d = = normalize(eyeray.dnormalize(eyeray.d););

// calculate ray intersection with bounding box// calculate ray intersection with bounding box
float float tneartnear, , tfartfar;;
bool hit = bool hit = IntersectBox(eyerayIntersectBox(eyeray, , boxMinboxMin, , boxMaxboxMax, , tneartnear, , tfartfar););
if (!hit) discard;if (!hit) discard;
if (if (tneartnear < 0.0) < 0.0) tneartnear = 0.0;= 0.0;

// calculate intersection points// calculate intersection points
float3 float3 PnearPnear = = eyeray.oeyeray.o + + eyeray.deyeray.d**tneartnear;;
float3 float3 PfarPfar = = eyeray.oeyeray.o + + eyeray.deyeray.d**tfartfar;;

// march along ray, accumulating color// march along ray, accumulating color
half4 c = 0;half4 c = 0;
half3 step = (half3 step = (PnearPnear -- PfarPfar) / (steps) / (steps--1);1);
half3 P = half3 P = PfarPfar;;
for(intfor(int i=0; i<steps; i++) {i=0; i<steps; i++) {

half4 s = VOLUMEFUNC(P);half4 s = VOLUMEFUNC(P);
c = s.a*s + (1.0c = s.a*s + (1.0--s.a)*c;s.a)*c;
P += step;P += step;

}}
c /= steps;c /= steps;
return c;return c;

}}



Ray Marching AdvantagesRay Marching Advantages

•• Loop compiles to REP/ENDREP in PS3.0Loop compiles to REP/ENDREP in PS3.0
–– Allows us to exceed the 512 instruction Allows us to exceed the 512 instruction 

PS2.0a limitPS2.0a limit
–– 100 steps is interactive on 6800 Ultra100 steps is interactive on 6800 Ultra

•• All blending is done in floatingAll blending is done in floating--point point 
precision in the shaderprecision in the shader



Bounding Volume IntersectionBounding Volume Intersection

•• We use bounding boxWe use bounding box
•• Intersect with ray using Kay & Intersect with ray using Kay & KajiyaKajiya

““slabsslabs”” methodmethod
•• AxisAxis--aligned box defined by minimum aligned box defined by minimum 

and maximum coordinatesand maximum coordinates
•• Slab is the space between two parallel Slab is the space between two parallel 

axisaxis--aligned planesaligned planes
•• Intersection of three slabs defines boxIntersection of three slabs defines box
•• Easy to Easy to vectorizevectorize



RayRay--Box Intersection Shader CodeBox Intersection Shader Code
bool
IntersectBox(Ray r, float3 boxmin, float3 boxmax, out float tnear,

out float tfar)
{

// compute intersection of ray with all six bbox planes
float3 invR = 1.0 / r.d;
float3 tbot = invR * (boxmin.xyz - r.o);
float3 ttop = invR * (boxmax.xyz - r.o);

// re-order intersections to find smallest and largest on each axis
float3 tmin = min (ttop, tbot);
float3 tmax = max (ttop, tbot);

// find the largest tmin and the smallest tmax
float2 t0 = max (tmin.xx, tmin.yz);
tnear = max (t0.x, t0.y);
t0 = min (tmax.xx, tmax.yz);
tfar = min (t0.x, t0.y);

// check for hit
bool hit;
if ((tnear > tfar)) 

hit = false;
else

hit = true;
return hit;

}



Ray Marching Static 3D TextureRay Marching Static 3D Texture



Ray Marching Procedural VolumesRay Marching Procedural Volumes

•• In addition to ray marching static In addition to ray marching static 
volumes stored in 3D textures, we can volumes stored in 3D textures, we can 
also render procedural volumes defined also render procedural volumes defined 
by functionsby functions

•• Volume function takes a position in 3D Volume function takes a position in 3D 
space, returns a color and opacityspace, returns a color and opacity

•• Can produce many different effects by Can produce many different effects by 
varying parameters and lookvarying parameters and look--up tablesup tables

•• Procedurals great for generating nonProcedurals great for generating non--
repeating animated effectsrepeating animated effects



Example: Volumetric FlameExample: Volumetric Flame

•• Revolves image of crossRevolves image of cross--section of flame section of flame 
around Y axis to produce volumearound Y axis to produce volume

•• Perturbs texture coordinates using 4 Perturbs texture coordinates using 4 
octaves of noise (stored in 3D texture)octaves of noise (stored in 3D texture)

•• Based on a shader byBased on a shader by
YuryYury UralskyUralsky



Procedural Flame CodeProcedural Flame Code

float4 flame(float3 P)float4 flame(float3 P)
{{

P = P*P = P*flameScaleflameScale + + flameTransflameTrans;;

// calculate radial distance in XZ plane// calculate radial distance in XZ plane
float2 float2 uvuv;;
uv.xuv.x = = length(P.xzlength(P.xz););
uv.yuv.y = P.y + turbulence4(noiseSampler, = P.y + turbulence4(noiseSampler, noisePosnoisePos) * ) * noiseStrengthnoiseStrength;;

return tex2D(flameSampler, return tex2D(flameSampler, P.xyP.xy););
}}



Volumetric Flame ImageVolumetric Flame Image



Procedural FireballProcedural Fireball

•• Similar to flame, but sphericalSimilar to flame, but spherical
•• Calculates distance from center of Calculates distance from center of 

volumevolume
•• Perturbs distance using noisePerturbs distance using noise
•• Maps distance to color and opacity using Maps distance to color and opacity using 

1D texture1D texture



Fireball CodeFireball Code

float4 fireball(float3 p, float time)float4 fireball(float3 p, float time)
{{

float d = length(p);float d = length(p);
d += turbulence(p*d += turbulence(p*noiseFreqnoiseFreq + time*+ time*timeScale).xtimeScale).x * * noiseAmpnoiseAmp;;
float4 c = tex1D(gradientSampler, d*float4 c = tex1D(gradientSampler, d*distanceScaledistanceScale););
return c;return c;

}}



Procedural FireballProcedural Fireball



Procedural FireballProcedural Fireball



Procedural ExplosionProcedural Explosion



Future WorkFuture Work

•• LightingLighting
–– For static volumes, can preFor static volumes, can pre--calculate calculate 

gradients and store in RGBgradients and store in RGB
–– Volumetric shadowingVolumetric shadowing

•• At each sample, can march along another ray At each sample, can march along another ray 
toward lighttoward light

•• Very expensiveVery expensive

•• Use early exit from loop once opacity Use early exit from loop once opacity 
reaches thresholdreaches threshold

•• Integrating volume effects with scene Integrating volume effects with scene 
geometrygeometry



ConclusionConclusion

•• Volume rendering is funVolume rendering is fun
–– Becoming practical for use in gamesBecoming practical for use in games

•• Shader model 3.0 looping makes new Shader model 3.0 looping makes new 
effects possibleeffects possible





GPU Gems 2GPU Gems 2
Programming Techniques for HighProgramming Techniques for High--Performance Graphics Performance Graphics 
and Generaland General--Purpose ComputationPurpose Computation

•• 880 full880 full--color pages, 330 figures, hard covercolor pages, 330 figures, hard cover
•• $59.99$59.99
•• Experts from universities and industryExperts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game 
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for 
anyone trying to keep pace with the rapid evolution of programmable graphics. If 
you’re serious about graphics, this book will take you to the edge of what the GPU 
can do.”
—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment


	Volume Rendering For Games
	Overview
	Why use Volume Rendering?
	Particle Systems
	Particle System in “Vulcan”
	Volume Rendering
	Volume Rendering using Slices
	Volume Rendering using Slices
	Volume Rendering by Ray Marching
	Ray Marching
	Ray Marching Code
	Ray Marching Advantages
	Bounding Volume Intersection
	Ray-Box Intersection Shader Code
	Ray Marching Static 3D Texture
	Ray Marching Procedural Volumes
	Example: Volumetric Flame
	Procedural Flame Code
	Volumetric Flame Image
	Procedural Fireball
	Fireball Code
	Procedural Fireball
	Procedural Fireball
	Procedural Explosion
	Future Work
	Conclusion
	
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation

