GameDevelopers <
RVIDIA.

Conference

Volume Rendering For Games

Simon Green
NVIDIA Corporation

GameDevelopers <

RVIDIA.

Conference

Overview

e Why use volume rendering?

e Volume rendering using slices

e \Volume rendering using ray marching
e Ray-box intersection

e Procedural volumes

e Conclusion

GameDevelopers <
Conference BVIDIA.

Why use Volume Rendering?

e Many phenomena in the real world
cannot be easily represented using
geometric surfaces
— Clouds, smoke, fire, explosions

e The appearance of these phenomena is
caused by the cumulative effect of light
emitted, absorbed and scattered by a
huge number of tiny particles

GameDevelopers <
RVIDIA.

Conference

Particle Systems

e VVolumetric effects usually approximated
INn games today using particle systems
with point sprites

e Problems with particle systems

— obvious intersections between sprites and
scene geometry
e can be improved with depth replace

— accurate lighting, shadowing is difficult
— texture movies use a lot of memory

GameDevelopers <
Conference RVIDIA.

Particle System in “Vulcan™

. RVIDIA.

GameDevelopers <
Conference T

Volume Rendering

e VVolume rendering simulates effect of
light emitted, absorbed and scattered
by large number of tiny particles In
volume

e Volume Is represented as a uniform 3D
array of samples
— can be pre-computed, or procedural

e Final image Is created by sampling the wa. .
volume along viewing rays and r
accumulating optical properties I}!

GameDevelopers <
RVIDIA.

Conference

Volume Rendering using Slices

e Volume Is sampled using proxy
geometry

e Polygons slice through the volume
perpendicular to the viewing direction

e Number of slices determines quality of
resulting image

e Slices usually drawn back to front

e Compositing performed using alpha
blending
— “over” operator: C'i=Ci + (1 - Ail) C'i+1
— uses a lot of framebuffer bandwidth

Ml

GameDevelopers <
Conference =

Volume Rendering using Slices
/

™~

™ slices

I

bounding volume

eye

GameDevelopers

Conference

Volume Rendering by Ray Marching

e Calculate intersection between view
ray and bounding volume

e March along ray between far and near
Intersection points, accumulating color
and opacity
— Look up in 3D texture, or evaluate

procedural function at each sample

— Can use uniform of adaptive step sizes

@’-’:“J

RVIDIA.

q

GameDevelopers <
Conference =

Ray Marching

bounding volume

eye

GameDevelopers <
RVIDIA.

Conference

Ray Marching Code

float4 RayMarchPS(Ray eyeray : TEXCOORDO,
uniform int steps) : COLOR

{

eyeray.d = normalize(eyeray.d);

// calculate ray intersection with bounding box

float tnear, tfar;

bool hit = IntersectBox(eyeray, boxMin, boxMax, tnear, tfar);
if (Thit) discard;

if (tnear < 0.0) tnear = 0.0;

// calculate intersection points
float3 Pnear = eyeray.o + eyeray.d*tnear;
float3 Pfar = eyeray.o + eyeray.d*tfar;

// march along ray, accumulating color
half4 c = 0;
half3 step = (Pnear - Pfar) / (steps-1);
half3 P = Pfar;
for(int 1=0; i<steps; i++) {
half4 s = VOLUMEFUNC(P);
c = s.a*s + (1.0-s.a)*c;
P += step;
}
c /= steps;
return c;

GameDevelopers

Conference

Ray Marching Advantages

e Loop compiles to REP/ENDREP in PS3.0

— Allows us to exceed the 512 instruction
PS2.0a limit

— 100 steps is interactive on 6800 Ultra

e All blending is done in floating-point
precision in the shader

@’-’:"‘ %

RVIDIA.

GameDevelopers

Conference

Bounding Volume Intersection

e \We use bounding box

e |Intersect with ray using Kay & Kajlya
“slabs™ method

e Axis-aligned box defined by minimum
and maximum coordinates

e Slab iIs the space between two parallel
axis-aligned planes

e Intersection of three slabs defines box ‘?’*

e Easy to vectorize

@;']

RVIDIA.

e
_

I}!

GameDevelopers <
Conference AVIDIA.

Ray-Box Intersection Shader Code

bool

IntersectBox(Ray r, float3 boxmin, float3 boxmax, out float tnear,
out float tfar)
{

// compute intersection of ray with all six bbox planes
float3 InvR 1.0 / r.d;

float3 tbot invkR * (boxmin.xyz - r.o);

float3 ttop invR * (boxmax.xyz - r.o);

// re-order intersections to find smallest and largest on each axis
float3 tmin = min (ttop, tbot);

float3 tmax = max (ttop, tbot);

// Tind the largest tmin and the smallest tmax

float2 t0 = max (tmin.xx, tmin.yz);

tnear = max (t0.x, t0.y);

t0 = min (tmax.xx, tmax.yz);

tfar = min (t0.x, t0.y);

// check for hit
bool hit;
iT ((tnear > tfar))
hit = false;
else
hit = true;
return hit;

GameDevelopers <
RVIDIA.

Conference

Ray Marching Static 3D Texture

GameDevelopers <
Conference T

Ray Marching Procedural Volumes

e |n addition to ray marching static
volumes stored in 3D textures, we can
also render procedural volumes defined
by functions

e VVolume function takes a position in 3D
space, returns a color and opacity

e Can produce many different effects by
varying parameters and look-up tables .rr L

!,

/

e Procedurals great for generating non-
repeating animated effects

GameDevelopers <
Conference BVIDIA.

Example: Volumetric Flame

e Revolves image of cross-section of flame
around Y axis to produce volume

e Perturbs texture coordinates using 4
octaves of noise (stored in 3D texture)

e Based on a shader by
Yury Uralsky

GameDevelopers &2
MVIDIA.

Conference

Procedural Flame Code

float4 flame(float3 P)
{

P = P*flameScale + flameTrans;

// calculate radial distance In XZ plane

float2 uv;

uv.x length(P.xz);

uv.y = P.y + turbulence4(noiseSampler, noisePos) * noiseStrength;

return tex2D(flameSampler, P.xy);

GameDevelopers <
RVIDIA.

Conference

Volumetric Flame Image

B oo L []@ B [m]e

GameDevelopers <

RVIDIA.

Conference

Procedural Fireball

e Similar to flame, but spherical

e Calculates distance from center of
volume

e Perturbs distance using noise

e Maps distance to color and opacity using
1D texture

GameDevelopers <

Conference

RVIDIA.

Fireball Code

float4 fireball(float3 p, float time)
{

float d = length(p);

d += turbulence(p*noiseFreq + time*timeScale).x * noiseAmp;

float4 c = texlD(gradientSampler, d*distanceScale);
return c;

GameDevelopers <
RVIDIA.

Conference

Procedural Fireball

RO

GameDevelopers <
RVIDIA.

Conference

Procedural Fireball

O

GameDevelopers <
RVIDIA.

Conference

Procedural Explosion

EaNEEE =IO

GameDevelopers <
Conference BVIDIA.

Future Work

e Lighting
— For static volumes, can pre-calculate
gradients and store in RGB

— Volumetric shadowing

At each sample, can march along another ray
toward light

* Very expensive

e Use early exit from loop once opacity
reaches threshold

e Integrating volume effects with scene
geometry

GameDevelopers <

RVIDIA.

Conference

Conclusion

e VVolume rendering is fun
— Becoming practical for use in games

e Shader model 3.0 looping makes new
effects possible

GPU Programmmg

developer.nvidia.com

Latest News

Developer Events Calendar
Technical Documentation
Conference Presentations

* GPU Programming Guide

e Powerful Tools, SDKs and more ...

Join our FREE registered developer program for early
access to NVIDIA drivers, cuttmg edge tg@!ﬁne

support forums, an --1,‘
- -
developer.nvidia.com
S2004 NVIDIA Corporation. NVIDIA, and the NVIDIA logo are trademarks andfor registered trademarks of
NVIDIA Corporation. Nalu is 2004 NVIDIA Corporation. All rights raserved,

GPU Gems 2

Programming Techniques for High-Performance Graphi
and General-Purpose Computation

EP!.!Gems 2

Pr: d-1rn-|r|T ¢ P |;|

i |'J‘ par
— r
't
-

ir.l-l' rrman

e 880 full-color pages, 330 figures, hard cover
e $59.99
e EXperts from universities and industry

Elﬂlr L ﬂr"H.‘ut! Fhirr

Foreword by I'I'1_u.J-rrlr.- Cplc Games
il F =ffirms Ferninda, Serie Ed

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”

—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

	Volume Rendering For Games
	Overview
	Why use Volume Rendering?
	Particle Systems
	Particle System in “Vulcan”
	Volume Rendering
	Volume Rendering using Slices
	Volume Rendering using Slices
	Volume Rendering by Ray Marching
	Ray Marching
	Ray Marching Code
	Ray Marching Advantages
	Bounding Volume Intersection
	Ray-Box Intersection Shader Code
	Ray Marching Static 3D Texture
	Ray Marching Procedural Volumes
	Example: Volumetric Flame
	Procedural Flame Code
	Volumetric Flame Image
	Procedural Fireball
	Fireball Code
	Procedural Fireball
	Procedural Fireball
	Procedural Explosion
	Future Work
	Conclusion
	
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation

