
Programming the GPU:
High-Level Shading Languages

Programming the GPU: Programming the GPU:
HighHigh--Level Shading LanguagesLevel Shading Languages

Randy FernandoRandy Fernando
Developer Technology Group

Talk OverviewTalk Overview

The Evolution of GPU Programming Languages
GPU Programming Languages and the Graphics
Pipeline
Syntax
Examples
HLSL FX framework

The Evolution of GPU Programming The Evolution of GPU Programming
LanguagesLanguages

IRIS GL
(SGI, 1982)

RenderMan
(Pixar, 1988)

C
(AT&T, 1970s)

OpenGL
(ARB, 1992)

PixelFlow
Shading

Language
(UNC, 1998)

C++
(AT&T, 1983)

Reality Lab
(RenderMorphics, 1994)

Java
(Sun, 1994)

Real-Time
Shading

Language
(Stanford,

2001)

Direct3D
(Microsoft, 1995)

HLSL
(Microsoft, 2002)

Cg
(NVIDIA, 2002)

GLSL
(ARB, 2003)

NVIDIANVIDIA’’s Position on s Position on
GPU Shading LanguagesGPU Shading Languages

Bottom line: please take advantage of all the
transistors we pack into our GPUs!
Use whatever language you like
We will support you

Working with Microsoft on HLSL compiler
NVIDIA compiler team working on Cg compiler
NVIDIA compiler team working on GLSL compiler

If you find bugs, send them to us and we’ll get
them fixed

The Need for ProgrammabilityThe Need for Programmability

VirtuaVirtua Fighter Fighter
(SEGA Corporation)(SEGA Corporation)

NV1NV1
50K triangles/sec50K triangles/sec
1M pixel ops/sec1M pixel ops/sec
1M transistors1M transistors

1995

Dead or Alive 3Dead or Alive 3
((TecmoTecmo Corporation)Corporation)

Xbox (NV2A)Xbox (NV2A)
100M triangles/sec100M triangles/sec
1G pixel ops/sec1G pixel ops/sec
20M transistors20M transistors

2001

DawnDawn
(NVIDIA Corporation)(NVIDIA Corporation)

GeForce FX (NV30)GeForce FX (NV30)
200M triangles/sec200M triangles/sec
2G pixel ops/sec2G pixel ops/sec
120M transistors120M transistors

20031995 2001 2003

The Need for ProgrammabilityThe Need for Programmability

VirtuaVirtua Fighter Fighter
(SEGA Corporation)(SEGA Corporation)

NV1NV1
1616--bit colorbit color
640 x 480640 x 480

Nearest filteringNearest filtering

1995

DawnDawn
(NVIDIA Corporation)(NVIDIA Corporation)

GeForce FX (NV30)GeForce FX (NV30)
128128--bit colorbit color
1024 x 7681024 x 768

8:1 8:1 AnisoAniso filteringfiltering

2003

Dead or Alive 3Dead or Alive 3
((TecmoTecmo Corporation)Corporation)

Xbox (NV2A)Xbox (NV2A)
3232--bit colorbit color
640 x 480640 x 480

Trilinear filteringTrilinear filtering

20011995 2001 2003

Where We Are NowWhere We Are Now
222M Transistors222M Transistors

660M 660M tristris/second/second

64 64 GflopsGflops

128128--bit colorbit color

1600 x 12001600 x 1200

16:1 16:1 anisoaniso
filteringfiltering

The Motivation for The Motivation for
HighHigh--Level Shading LanguagesLevel Shading Languages

Graphics hardware has become
increasingly powerfulincreasingly powerful

Programming powerful hardware
with assembly code is hardassembly code is hard

GeForce FX and GeForce 6
Series GPUs support programs
that are thousands of assembly that are thousands of assembly
instructions longinstructions long

Programmers need the benefits
of a highhigh--level languagelevel language:

Easier programming
Easier code reuse
Easier debugging

AssemblyAssembly
…
DP3 R0, c[11].xyzx, c[11].xyzx;
RSQ R0, R0.x;
MUL R0, R0.x, c[11].xyzx;
MOV R1, c[3];
MUL R1, R1.x, c[0].xyzx;
DP3 R2, R1.xyzx, R1.xyzx;
RSQ R2, R2.x;
MUL R1, R2.x, R1.xyzx;
ADD R2, R0.xyzx, R1.xyzx;
DP3 R3, R2.xyzx, R2.xyzx;
RSQ R3, R3.x;
MUL R2, R3.x, R2.xyzx;
DP3 R2, R1.xyzx, R2.xyzx;
MAX R2, c[3].z, R2.x;
MOV R2.z, c[3].y;
MOV R2.w, c[3].y;
LIT R2, R2;
...

HighHigh--Level LanguageLevel Language
…
float3 cSpecular = pow(max(0, dot(Nf, H)),

phongExp).xxx;
float3 cPlastic = Cd * (cAmbient + cDiffuse) +

Cs * cSpecular;
…

GPU Programming Languages GPU Programming Languages
and the Graphics Pipelineand the Graphics Pipeline

The Graphics PipelineThe Graphics Pipeline

The Graphics PipelineThe Graphics Pipeline

Vertex Vertex
ProgramProgram

Executed Executed
Once Per Once Per

Vertex

Fragment Fragment
ProgramProgram

Executed Executed
Once Per Once Per
FragmentFragmentVertex

Shaders and the Graphics PipelineShaders and the Graphics Pipeline

HLSL / Cg / GLSL ProgramsHLSL / Cg / GLSL Programs

Vertex
Shader

Fragment
ShaderApplication Frame Buffer

Vertex dataVertex data Interpolated Interpolated
values

FragmentsFragments
values

In the future, other parts of the graphics
pipeline may become programmable through
high-level languages.

CompilationCompilation

Application and API LayersApplication and API Layers

3D Application3D Application

GLSLGLSLHLSLHLSL CgCg

Direct3DDirect3D OpenGLOpenGL 3D Graphics API

Shading Language

GPUGPU

Using GPU Programming LanguagesUsing GPU Programming Languages

Use 3D API calls to specify vertex and fragment
shaders
Enable vertex and fragment shaders
Load/enable textures as usual
Draw geometry as usual
Set blend state as usual
Vertex shader will execute for each vertex
Fragment shader will execute for each fragment

Compilation TargetsCompilation Targets

Code can be compiled for specific hardware
Optimizes performance
Takes advantage of extra hardware functionality
May limit language constructs for less capable
hardware

Examples of compilation targets:
vs_1_1, vs_2_0, vs_3_0
ps_1_1, ps_2_0, ps_2_x, ps_2_a, ps_3_0
vs_3_0 and ps_3_0 are the most capable profiles,
supported only by GeForce 6 Series GPUs

Shader CreationShader Creation

These shaders are used for
modeling in Digital Content modeling in Digital Content
Creation (DCC) applicationsCreation (DCC) applications
or rendering in other rendering in other
applicationsapplications

A shading language compilerA shading language compiler
compiles the shaders to a
variety of target platforms,
including APIs, OSes, and
GPUs

Shaders are createdShaders are created (from
scratch, from a common
repository, authoring tools,
or modified from other
shaders)

Language SyntaxLanguage Syntax

LetLet’’s Pick a Languages Pick a Language

HLSL, Cg, and GLSL have much in common
But all are different (HLSL and Cg are much more similar to
each other than they are to GLSL)
Let’s focus on just one language (HLSL) to illustrate the key
concepts of shading language syntax
General References:

HLSL: DirectX Documentation
(http://www.msdn.com/DirectX)
Cg: The Cg Tutorial
(http://developer.nvidia.com/CgTutorial)
GLSL: The OpenGL Shading Language
(http://www.opengl.org)

http://developer.nvidia.com/CgTutorial
http://www.opengl.org/

Data TypesData Types

float 32-bit IEEE floating point
half 16-bit IEEE-like floating point
bool Boolean
sampler Handle to a texture sampler

struct Structure as in C/C++

No pointers… yet.

Array / Vector / Matrix DeclarationsArray / Vector / Matrix Declarations

Native support for vectors (up to length 4)
and matrices (up to size 4x4):

float4 mycolor;
float3x3 mymatrix;

Declare more general arrays exactly as in C:
float lightpower[8];

But, arrays are first-class types, not pointers
float v[4] != float4 v

Implementations may subset array
capabilities to match HW restrictions

Function OverloadingFunction Overloading

Examples:
float myfuncA(float3 x);

float myfuncA(half3 x);

float myfuncB(float2 a, float2 b);

float myfuncB(float3 a, float3 b);

float myfuncB(float4 a, float4 b);

Very useful with so many data types.

Different ConstantDifferent Constant--Typing RulesTyping Rules

In C, it’s easy to accidentally use high precision

half x, y;

x = y * 2.0; // Multiply is at

// float precision!

Not in HLSL

x = y * 2.0; // Multiply is at

// half precision (from y)

Unless you want to

x = y * 2.0f; // Multiply is at

// float precision

Support for Vectors and MatricesSupport for Vectors and Matrices

Component-wise + - * / for vectors

Dot product

dot(v1,v2); // returns a scalar

Matrix multiplications:

assuming a float4x4 M and a float4 v

matrix-vector: mul(M, v); // returns a vector

vector-matrix: mul(v, M); // returns a vector

matrix-matrix: mul(M, N); // returns a matrix

New OperatorsNew Operators
Swizzle operator extracts elements from vector or matrix

a = b.xxyy;

Examples:
float4 vec1 = float4(4.0, -2.0, 5.0, 3.0);

float2 vec2 = vec1.yx; // vec2 = (-2.0,4.0)

float scalar = vec1.w; // scalar = 3.0

float3 vec3 = scalar.xxx; // vec3 = (3.0, 3.0, 3.0)

float4x4 myMatrix;

// Set myFloatScalar to myMatrix[3][2]

float myFloatScalar = myMatrix._m32;

Vector constructor builds vector
a = float4(1.0, 0.0, 0.0, 1.0);

ExamplesExamples

Sample ShadersSample Shaders

Looking Through a ShaderLooking Through a Shader

Demonstration in FX Composer

HLSL FX FrameworkHLSL FX Framework

The Problem with Just a Shading The Problem with Just a Shading
LanguageLanguage

A shading language describes how the vertex or fragment
processor should behave
But how about:

Texture state?
Blending state?
Depth test?
Alpha test?

All are necessary to really encapsulate the notion of an “effect”
Need to be able to apply an “effect” to any arbitrary set of
geometry and textures
Solution: .fx file format

HLSL FXHLSL FX

Powerful shader specification and interchange format
Provides several key benefits:

Encapsulation of multiple shader versions
Level of detail
Functionality
Performance

Editable parameters and GUI descriptions
Multipass shaders
Render state and texture state specification

FX shaders use HLSL to describe shading algorithms
For OpenGL, similar functionality is available in the form of
CgFX (shader code is written in Cg)
No GLSL effect format yet, but may appear eventually

Using TechniquesUsing Techniques

Each .fx file typically represents an effect
Techniques describe how to achieve the effect
Can have different techniques for:

Level of detail
Graphics hardware with different capabilities
Performance

A technique is specified using the technique
keyword
Curly braces delimit the technique’s contents

MultipassMultipass

Each technique may contain one or more passes
A pass is defined by the pass keyword
Curly braces delimit the pass contents
You can set different graphics API state in each
pass

An Example: An Example: SimpleTexPs.fxSimpleTexPs.fx
/************* TWEAKABLES **************/

float4x4 WorldIT : WorldInverseTranspose < string UIWidget="None"; >;
float4x4 WorldViewProj : WorldViewProjection < string UIWidget="None"; >;
float4x4 World : World < string UIWidget="None"; >;
float4x4 ViewI : ViewInverseTranspose < string UIWidget="None"; >;

///////////////

float3 LightPos : Position
<

string Object = "PointLight";
string Space = "World";

> = {-10.0f, 10.0f, -10.0f};

float3 AmbiColor : Ambient = {0.1f, 0.1f, 0.1f};

An Example: An Example: SimpleTexPs.fxSimpleTexPs.fx (Cont(Cont’’d)d)

texture ColorTexture : DIFFUSE
<

string ResourceName = "default_color.dds";
string TextureType = "2D";

>;

sampler2D cmap = sampler_state
{

Texture = <ColorTexture>;
MinFilter = Linear;
MagFilter = Linear;
MipFilter = None;

};

An Example: An Example: SimpleTexPs.fxSimpleTexPs.fx (Cont(Cont’’d)d)

/* data from application vertex buffer */
struct appdata {

float3 Position : POSITION;
float4 UV : TEXCOORD0;
float4 Normal : NORMAL;

};

/* data passed from vertex shader to pixel shader */
struct vertexOutput {

float4 HPosition : POSITION;
float2 TexCoord0 : TEXCOORD0;
float4 diffCol : COLOR0;

};

An Example: An Example: SimpleTexPs.fxSimpleTexPs.fx (Cont(Cont’’d)d)

/*********** vertex shader ******/

vertexOutput lambVS(appdata IN)
{

vertexOutput OUT;
float3 Nn = normalize(mul(IN.Normal, WorldIT).xyz);
float4 Po = float4(IN.Position.xyz,1);
OUT.HPosition = mul(Po, WorldViewProj);
float3 Pw = mul(Po, World).xyz;
float3 Ln = normalize(LightPos - Pw);
float ldn = dot(Ln,Nn);
float diffComp = max(0,ldn);
OUT.diffCol = float4((diffComp.xxx + AmbiColor),1);
OUT.TexCoord0 = IN.UV.xy;
return OUT;

}

An Example: An Example: SimpleTexPs.fxSimpleTexPs.fx (Cont(Cont’’d)d)

/********* pixel shader ********/

float4 myps(vertexOutput IN) : COLOR {
float4 texColor = tex2D(cmap, IN.TexCoord0);
float4 result = texColor * IN.diffCol;
return result;

}

An Example: An Example: SimpleTexPs.fxSimpleTexPs.fx (Cont(Cont’’d)d)

technique t0
{

pass p0
{

VertexShader = compile vs_1_1 lambVS();
ZEnable = true;
ZWriteEnable = true;
CullMode = None;
PixelShader = compile ps_1_1 myps();

}
}

Introducing DXSAS .86Introducing DXSAS .86
Specification from Microsoft

Updated version in the current DX SDK
FX Composer currently supports .86

Waiting for scripting additions

Defines a standard set of semantics and
annotations
Help menu brings up the current list of
annotations/semantics

You can also use fxmapping.xml to map your
own custom annotations/semantics to the spec

ScriptExecuteScriptExecute -- .86 style.86 style
Designed to help the effect interaction problem
Adds powerful scripting features to effects
A superset of the XML ‘scene commands’ that FX
Composer 1.1 shipped with

More powerful/general
All FX Composer effects support .86

Old scene command XML automatically interpreted as
ScriptExecute.
FX Composer 2 will do SAS 1.x

DXSAS ScriptingDXSAS Scripting

These examples include techniques for:
MRTs
Loops of Passes
Looping on Booleans
FXCOMPOSER_RESET
Re-Using Texture Samplers
Using the GPU for Texture Creation

ScriptExecuteScriptExecute: Fur Shells: Fur Shells

Script loops on a per-object
basis
Loop counter used to distance
each fur shell
Properties panel lets you
tweak the appearance

ScriptExecuteScriptExecute: : RenderportRenderport

Rendering from different POV
Switch camera from script

Example scene, Soft Shadows
Depth map rendered from POV of
light

Current matrices are changed to use
the values from the light

ScriptExecuteScriptExecute: Shader Stacks: Shader Stacks

Tiles.fx + EdgeDetect.fx Corona.fx + EdgeDetect.fx

HLSL .fx ExampleHLSL .fx Example

Demonstrations in FX Composer

Questions?Questions?

developer.nvidia.comdeveloper.nvidia.com
The Source for GPU ProgrammingThe Source for GPU Programming

Latest documentation
SDKs
Cutting-edge tools

Performance analysis tools
Content creation tools

Hundreds of effects
Video presentations and tutorials
Libraries and utilities
News and newsletter archives

EverQuest® content courtesy Sony Online Entertainment Inc.

http://developer.nvidia.com/object/FX_Composer_Shaders.html
http://developer.nvidia.com/object/FX_Composer_Shaders.html
http://developer.nvidia.com/object/FX_Composer_Shaders.html

GPU Gems: Programming Techniques, GPU Gems: Programming Techniques,
Tips, and Tricks for RealTips, and Tricks for Real--Time GraphicsTime Graphics

Practical real-time graphics techniques from
experts at leading corporations and universities

Great value:
Full color (300+ diagrams and screenshots)
Hard cover
816 pages
CD-ROM with demos and sample code

“GPU Gems is a cool toolbox of advanced graphics
techniques. Novice programmers and graphics gurus
alike will find the gems practical, intriguing, and
useful.”
Tim Sweeney
Lead programmer of Unreal at Epic Games

“This collection of articles is
particularly impressive for its depth and
breadth. The book includes product-
oriented case studies, previously
unpublished state-of-the-art research,
comprehensive tutorials, and extensive
code samples and demos throughout.”
Eric Haines
Author of Real-Time Rendering

For more, visit:For more, visit:
http://developer.nvidia.com/http://developer.nvidia.com/GPUGemsGPUGems

GPU Gems 2GPU Gems 2
Programming Techniques for HighProgramming Techniques for High--PerformancePerformance
Graphics and GeneralGraphics and General--Purpose ComputationPurpose Computation

880 full-color pages, 330 figures, hard cover
$59.99
Experts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”
—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

	Programming the GPU: High-Level Shading Languages
	Talk Overview
	The Evolution of GPU Programming Languages
	NVIDIA’s Position on GPU Shading Languages
	The Need for Programmability
	The Need for Programmability
	The Motivation for High-Level Shading Languages
	GPU Programming Languages and the Graphics Pipeline
	The Graphics Pipeline
	The Graphics Pipeline
	Shaders and the Graphics Pipeline
	Compilation
	Application and API Layers
	Using GPU Programming Languages
	Compilation Targets
	Shader Creation
	Language Syntax
	Let’s Pick a Language
	Data Types
	Array / Vector / Matrix Declarations
	Function Overloading
	Different Constant-Typing Rules
	Support for Vectors and Matrices
	New Operators
	Examples
	Sample Shaders
	Looking Through a Shader
	HLSL FX Framework
	The Problem with Just a Shading Language
	HLSL FX
	Using Techniques
	Multipass
	An Example: SimpleTexPs.fx
	An Example: SimpleTexPs.fx (Cont’d)
	An Example: SimpleTexPs.fx (Cont’d)
	An Example: SimpleTexPs.fx (Cont’d)
	An Example: SimpleTexPs.fx (Cont’d)
	An Example: SimpleTexPs.fx (Cont’d)
	Introducing DXSAS .86
	ScriptExecute - .86 style
	DXSAS Scripting
	ScriptExecute: Fur Shells
	ScriptExecute: Renderport
	ScriptExecute: Shader Stacks
	HLSL .fx Example
	Questions?
	developer.nvidia.comThe Source for GPU Programming
	GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics
	GPU Gems 2 Programming Techniques for High-PerformanceGraphics and General-Purpose Computation
	

