
Integrating Shaders into Your Game
Engine

Bryan Dudash
NVIDIA

Developer Technology

Agenda

Why shaders?
What are shaders exactly?

Evolution of graphics
Using Shaders

High Level Shading Languages
C++ side API and semantics
Fallbacks
Shader Advice

Tools

Why Shaders?

Pixel Shaders are the #1 feature that will visually
differentiate next-gen titles
Distinct materials

Great way to show detail without geometry
Not everything matte or plastic
Moving away from just Blinn/Phong
Custom light types

Volumetric lights
Not limited to OpenGL fixed pipeline

No Shaders vs Shaders

Flat texture, single texture,
vertex lighting, no shadow

Bump mapped, multi texture,
per pixel lighting, soft shadow

Doom 3 courtesy of id Software. All Rights Reserved.

Per Pixel Lighting

Bump mapping / Normal Mapping / Per-Pixel
Lighting are synonyms

Blinn Diffuse Specular lighting
With Tangent space Bump mapping

Instead of calculating lighting on a per-vertex
normal, use a per-pixel normal instead

Two quads lit per pixel

Pipelined Architecture

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerVertex
Processor

Geometry
StorageCPU

Vertices Pixels

What are Shaders?
User-defined vertex and fragment processing

Custom animation, lighting, image processing, etc.

Ubiquitous platform & API support
PCs, next-generation consoles, cellular phones
Direct3D, OpenGL, OpenGL-ES

Programmed in C-like high level languages
HLSL (Direct3D)
GLSL (OpenGL)
GLSL-ES (OpenGL-ES)
Cg (OpenGL, OpenGL-ES)

Shader Taxonomy
Hardware functionality often described relative to
Direct3D shader models 1 – 3

Newer shader models increase programmability

SM 1: Fixed-point color blending, static dependent
texturing, <= 16 operations

SM 2: Floating-point arithmetic, programmable
dependent texturing, <= 64 operations

SM 3: Branching & subroutines, 1000s of operations

PC/DirectX Shader Model Timeline

1998 1999 2000 2001 2002 2003 2004

DirectX 6
Multitexturing

Riva TNT

DirectX 8
SM 1.x

GeForce 3 Cg

DirectX 9
SM 2.0

GeForceFX

DirectX 9.0c
SM 3.0

GeForce 6
DirectX 5
Riva 128

DirectX 7
T&L TextureStageState

GeForce 256

Quake 3 Giants Halo Far Cry UE3

All images courtesy of respective companies. All Rights Reserved.

DirectX 5 / OpenGL 1.0 and Before

Hardwired pipeline
Inputs are DIFFUSE, FOG, TEXTURE
Operations are SELECT, MUL, ADD, BLEND
Blended with FOG
RESULT = (1.0-FOG)*COLOR + FOG*FOGCOLOR

Example Hardware
RIVA 128, Voodoo 1, Reality Engine, Infinite Reality

No “ops”, “stages”, or recirculation

DirectX 6, OpenGL 1.2

Multi-texturing

Configurable A op B op C pipeline
op can be SELECT, ADD, MUL, MAD, SUBTRACT, BLEND
Inputs can be CURRENT, DIFFUSE, TEXTURE, or CONST
Separate expressions for RGB and Alpha

Example Hardware
Riva TNT, Rage 128, Voodoo 2, Matrox G500

DirectX 6-era Game: Quake 3

Multi-texturing allows efficient lightmapping,
enabling realistic (static) environment lighting
Vastly improves upon DX5-era DIFFUSE lighting

DIFFUSE Lighting Multitexture Lightmaps

Quake 3 courtesy of id Software. All Rights Reserved.

DirectX 7 / OpenGL 1.3

Improved Multi-texturing
New HW adds DOT3 and EMBM operations
New input: SPECULAR
Cube maps & projected textures

Support for HW Transform & Lighting
Directional, point, and spot lights.
Vertex tweening & skinning
Texture coordinate transformation & generation

Example HW
GeForce 256, ATI Radeon, Intel Extreme Graphics 2

DirectX 7-era Game: Giants

T&L used to radically increase world complexity
Vertex tweening & skinning improve animation
DOT3 used to dynamically light everything per-pixel
Environment mapping adds specular to objects
Projected texturing used to cast shadow onto ground

Giants courtesy of Planet Moon Studios. All Rights Reserved.

DirectX 6 vs DirectX 7

Giants courtesy of Planet Moon Studios. All Rights Reserved.

DirectX 8, SM 1.x / OpenGL 1.4

Programmable vertex shaders
Up to 128 floating-point instructions

Programmable pixel shaders
Up to 16 fixed-point vector instructions and 4 textures
3D texture support
Up to 1 level of dependent texturing

Advanced Render-to-Texture support

Example Hardware
GeForce 3, ATI Radeon 8500, XGI Volari V3, Matrox Parhelia

SM 1.x-era Game: Halo

Vertex shaders used to add fresnel reflection to ice
Pixel shaders used to add glow to sun
Render-to-texture used to distort pistol scope
Dependent texturing used to animate & light water

Halo courtesy of Microsoft. All Rights Reserved.

DirectX 7 vs DirectX 8

Halo courtesy of Microsoft. All Rights Reserved.

Cg – C for Graphics

High-level language designed for real-time shaders

Supported in major DCC apps (Maya, Max, XSI)
What artists see in tool chain matches in-game result

HLL vs Assembly
Assembly
ADDR R0.xyz, eyePosition.xyzx, -f[TEX0].xyzx;
DP3R R0.w, R0.xyzx, R0.xyzx;
RSQR R0.w, R0.w;
MULR R0.xyz, R0.w, R0.xyzx;
ADDR R1.xyz, lightPosition.xyzx, -f[TEX0].xyzx;
DP3R R0.w, R1.xyzx, R1.xyzx;
RSQR R0.w, R0.w;
MADR R0.xyz, R0.w, R1.xyzx, R0.xyzx;
MULR R1.xyz, R0.w, R1.xyzx;
DP3R R0.w, R1.xyzx, f[TEX1].xyzx;
MAXR R0.w, R0.w, {0}.x;
SLER H0.x, R0.w, {0}.x;
DP3R R1.x, R0.xyzx, R0.xyzx;
RSQR R1.x, R1.x;
MULR R0.xyz, R1.x, R0.xyzx;
DP3R R0.x, R0.xyzx, f[TEX1].xyzx;
MAXR R0.x, R0.x, {0}.x;
POWR R0.x, R0.x, shininess.x;
MOVXC HC.x, H0.x;
MOVR R0.x(GT.x), {0}.x;
MOVR R1.xyz, lightColor.xyzx;
MULR R1.xyz, Kd.xyzx, R1.xyzx;
MOVR R2.xyz, globalAmbient.xyzx;
MOVR R3.xyz, Ke.xyzx;
MADR R3.xyz, Ka.xyzx, R2.xyzx, R3.xyzx;
MADR R3.xyz, R1.xyzx, R0.w, R3.xyzx;
MOVR R1.xyz, lightColor.xyzx;
MULR R1.xyz, Ks.xyzx, R1.xyzx;
MADR R3.xyz, R1.xyzx, R0.x, R3.xyzx;
MOVR o[COLR].xyz, R3.xyzx;
MOVR o[COLR].w, {1}.x;

High-level source code
float3 L = normalize(lightPosition – position.xyz);
float3 H = normalize(L + normalize(eyePosition –

position.xyz));

color.xyz = Ke + (Ka * globalAmbient) +
Kd * lightColor * max(dot(L, N), 0) +
Ks * lightColor * pow(max(dot(H, N), 0), shininess);

color.w = 1;

Impact of HLLs

Dramatic increase in shader adoption
Tens of games per year to hundreds

Shift in game development
Shaders become content requirement, not tech feature
“What do I want?”, not “what can I do?”
Gives control of the look of the game to artists

Unreal courtesy of Epic Games. All Rights Reserved.

DirectX 9, SM 2.0 / OpenGL 1.5

Floating point pixel processing
16/32-bit floating point shaders, render targets & textures
Up to 64 vector instructions and 16 textures
Arbitrary dependent texturing

Longer vertex processing – 256 instructions

Multiple Render Targets – up to 16 outputs per pixel

Example Hardware
GeForce FX 5900, ATI Radeon 9700, S3 DeltaChrome

DirectX 9.0c, SM 3.0 / OpenGL 2.0

Unified shader programming model
Pixel & vertex shader flow control
Infinite length vertex & pixel shaders
Vertex shader texture lookups

Floating-point filtering & blending

Geometry instancing

Example Hardware
GeForce 6800, GeForce 7800 GTX

SM 3.0-era Game: Unreal Engine 3

16-bit FP blending for high dynamic range lighting
16-bit FP filtering accelerates glow and exposure FX
Long shaders & flow control for virtual displacement
mapping, soft shadows, iridescence, fog, etc.

Unreal Engine 3 courtesy of Epic Games. All Rights Reserved.

General-purpose Programming Graphics Processing Unit
Non-graphics operations on the GPU

The GPU has is an extremely flexible and powerful processor
Programmability
Precision
Performance

Example applications (from GPGPU.org)
Advanced Rendering: Global Illumination, Image-based Modeling
Computational Geometry
Monte Carlo Methods

Many GPGPU Examples in NVIDIA SDK
http://developer.nvidia.com/object/sdk_home.html

GPU Gems 2 Book
http://developer.nvidia.com/GPUGems2/

GPGPU?

http://developer.nvidia.com/object/sdk_home.html
http://developer.nvidia.com/GPUGems2/

Example: Fluid Simulation

Navier-Stokes fluid simulation on the GPU

Interior obstacles
Without branching
Zcull optimization

Fast on latest GPUs
~8ms/frame at 256x256 on
GeForce 6800 Ultra(includes rendering)

Available in NVIDIA SDK 8.5

“Fast Fluid Dynamics Simulation on the
GPU”, Mark Harris. In GPU Gems.

Using Shaders

“Effects”
Direct3D FX and CgFX

ID3DXEffect or CGeffect
Wrapper around pixel and vertex shaders
Can Configure

Target shader version
Common case variables

Can reference a library of shader functions
Define multi-pass techniques

Semantics

Define any variable naming you want
Semantics make sure constants get set

float4x4 wvp : WorldViewProjection;

D3D SAS is standardized
Supported by many applications

FX Composer
3D Studio Max

OpenGL semantics standardized for CgFX in 1.4

Annotations
Custom data associated with any element of your HLSL or
CgFX effect

sampler2D anisoTextureSampler <
string file = "Art/stone-color.png";

> = sampler_state {
generateMipMap = true;
minFilter = LinearMipMapLinear;
magFilter = Linear;
WrapS = Repeat;
WrapT = Repeat;
MaxAnisotropy = 8;

};

Allows you to provide hooks to set per object data
E.g. Used extensively by shader tools for UI controls

CgFX Semantics Demo

Demo Important Bits

Tangent basis interpolated from vertex shader
Single fragment shader for lighting
An unsized array of light structures that is
dynamically resized by the C++ side
A handful of different light types that implement
the light interface

Point light
Spot Light
Etc…

Optional Bump mapping based on a constant

Light Interface

Define a CgFX interface to represent a light object

interface Light
{

LIGHTRES compute(const LIGHTINFOS infos, LIGHTRES prevres);
};

Then can have the C++ side set whatever, or
however many lights it wants to.

CgFX runtime automatically recompiles
Alternatively, you can precompile all variations and use
directly

Single Lighting Function

Sample albedo map for base color
Normalize interpolated vectors

Tangent space basis vectors
Optionally perturb our normal based on a normal
map
Iterate over our lights and accumulate diffuse and
specular
Combine color and lighting values to produce final
result

Lighting Shader
float4 color = tex2D(AlbedoMapSampler,inUV);

// Up front normalize to correct interpolated error, skip tangent basis, as the bumped normal gets
normalized
float3 toView = normalize(inToView);
float3 lightDir = normalize(inLightDir.xyz);

// get our bumped normal, or jsut use the original based on the configuration (compiled out)
float3 normal = bumpNormal(inNormal,inTangent,inBiNormal,NormalMapSampler,inUV.xy);;

LIGHTINFOS lightInfo;
lightInfo.Pw = inWorldPos; lightInfo.Vn = toView;
lightInfo.Nb = normal; lightInfo.SpecExpon = sExp;

// Go through our lights
LIGHTRES blinnValues;
for(int i=0;i<aLights.length;i++)
{

blinnValues = aLights[i].compute(lightInfo,blinnValues);
}

return float4(blinnCombine(color.xyz,ambient.xyz,blinnValues),1);

C++ Side
CGparameter lArray;
lArray = cgGetNamedEffectParameter(effect,"aLights");
assert(lArray);
cgSetArraySize(lArray,numLights);
for(int i=0;i<numLights;i++)
{
CGparameter p = cgGetArrayParameter(lArray,i);
if(p)
{

cgDisconnectParameter(p);
cgConnectParameter(lights[i].handle,p);

}
}

C++ Side

Assign the light position through the effect given a
handle to the variable
Sets number of lights and light info based on
program code dynamically
Can also pick whether or not to use normal maps

When not using it, shader gets faster
Any dynamic configuration can be represented as
a uniform parameter or global constant

Shader Fallbacks

A Fallback is just a way for your application to
control the speed quality tradeoff
Makes porting much easier!
Max lights in the scene is a great fallback param
Can add in and out complex full screen effects
Regular shadows vs Soft Shadows
Shader Model differences

Maybe same effect, but faster on SM3.0 due to branching.

CPU Side.. How to Deal with
Fallbacks

Need to handle multiple levels of hardware support
for different effects

Turn on and off effects
Provide a convenient mechanism to add cooler
effects as the game gets close to shipping
Use the right technique for the right card

Just because a card says it supports SM2.0 doesn’t
mean you want to use the full scale SM2.0 effect,

Maybe use SM1 path on low end SM2 cards
Use QA testing to define exceptions

NVIDIA has a CSR test lab to help with this!

Fallbacks Final Thoughts

This can be great to put in early
Can easily add a new fallback

Reassign cards to a new bucket
Have each shader level get the best experience with a
decent frame rate

Use Device Caps!
Only override for a driver/hardware bug or user settings

Create a few common paths
Based on Shader model at the coarsest level
Possibly just high end and compatibility paths
A few tweakables

of lights, samples, etc

Shader Library
Rather than writing each shader separately
Code re-use is good!!
Establish common interpolated values

Vertex to Fragment/Pixel program
e.g. At a base, COLOR0, TEXCOORD0 off
limits

Create a library of useful functions
Break everything out
Only costs compile time (can be
preprocessed!)

Write with extensibility in Mind

Quick hacks are for prototyping
Same as regular code
Establish guidelines for style
Full preprocessor support

#ifdef #define etc
Naming convention for techniques
No Assembly!

Performance
CPU bound, or Pixel Shader
NVIDIA’s GPU Programming Guide
NVIDIA provides a number of
handy performance analysis tools

NVShaderPerf
NVPerfHUD
NVPerfKit

Shader creation pipeline

Goal
Easy creation and integration of shaders

Requirements
Artist tweakable parameters?
Technical artist shader creation?

Export from DCC tool?

FX Composer

FX Composer 1.8
D3D .fx and SAS
Prototype Shaders,
Develop the Shader Library
Create Fallbacks
Export custom parameters

FX Composer 2.0
CgFX support!

See Tools Session later on today!
http://developer.nvidia.com

http://developer.nvidia.com/

Collada

XML Interchange format
Provides a standard way to read and associate
shaders and data
Can even handle model data

Vertices, etc
Sony is working to ensure compatibility with its
tools
FX Composer 2.0 to support

DCC Tools

Discreet’s 3ds Max 5
HLSL FX with SAS

Alias|Wavefront’s Maya 4.5
CgFx

XSI’s Softimage
HLSL FX and CgFX

Can load a FX files and tweak customizable
parameters within the DCC app
Take those tweaked values and use them to set the
standards for the shaders
Make a model export that associates the shader
and customized parameters so that an artist can
control how a model looks in game

Conclusion

Use high-level shading languages
Use FX files

Either CgFX or D3D FX
Use Semantics

Very easy way for you to drop in effects
Define the art pipeline in advance

Understand how artists will interact with and preview
shaders

Treat Shaders like C++ code
Good design can save tons of time in making your game
look amazing!

Questions

http://developer.nvidia.com

http://developer.nvidia.com/CgTutorial

Email: bdudash@nvidia.com

http://developer.nvidia.com/
http://developer.nvidia.com/CgTutorial
mailto:bdudash@nvidia.com

	Integrating Shaders into Your Game Engine
	Agenda
	Why Shaders?
	No Shaders vs Shaders
	Per Pixel Lighting
	What are Shaders?
	Shader Taxonomy
	PC/DirectX Shader Model Timeline
	DirectX 5 / OpenGL 1.0 and Before
	DirectX 6, OpenGL 1.2
	DirectX 6-era Game: Quake 3
	DirectX 7 / OpenGL 1.3
	DirectX 7-era Game: Giants
	DirectX 6 vs DirectX 7
	DirectX 8, SM 1.x / OpenGL 1.4
	SM 1.x-era Game: Halo
	DirectX 7 vs DirectX 8
	Cg – C for Graphics
	HLL vs Assembly
	Impact of HLLs
	DirectX 9, SM 2.0 / OpenGL 1.5
	DirectX 9.0c, SM 3.0 / OpenGL 2.0
	SM 3.0-era Game: Unreal Engine 3
	GPGPU?
	Example: Fluid Simulation
	Using Shaders
	“Effects”
	Semantics
	Annotations
	CgFX Semantics Demo
	Demo Important Bits
	Light Interface
	Single Lighting Function
	Lighting Shader
	C++ Side
	C++ Side
	Shader Fallbacks
	CPU Side.. How to Deal with Fallbacks
	Fallbacks Final Thoughts
	Shader Library
	Write with extensibility in Mind
	Performance
	Shader creation pipeline
	FX Composer
	Collada
	DCC Tools
	Conclusion
	Questions

