
Performance Tools

Raul Aguaviva and Jeff Kiel (NVIDIA Corporation)

Copyright © NVIDIA Corporation 2004

Performance Tools Agenda

GPU architecture at a glance
Intel VTune: Code Profiling
NVGLExpert: OpenGL API Assistance
NVShaderPerf: Shader Performance
NVPerfKit: Driver and GPU Performance Data
NVPerfHUD: Interactive Performance Analysis

Copyright © NVIDIA Corporation 2004

GPU architecture at a glance

Pipelined architecture
Each unit needs the data from the previous unit to do its job

Bottleneck identification and elimination
Balancing the pipeline

Copyright © NVIDIA Corporation 2004

GPU Pipelined Architecture (simplified view)

Frame
buffer

Pixel
Shader

Texture
Storage +
Filtering

RasterizerVertex
Shader

Vertex
SetupCPU

Vertices Pixels

GPU

One unit can limit the speed of the pipeline

Copyright © NVIDIA Corporation 2004

Bottleneck Identification

Modify the stage itself
By decreasing its workload

FPS FPS

If performance/FPS improves greatly, then you know this is
the bottleneck
Careful not to change the workload of other stages!

Copyright © NVIDIA Corporation 2004

Bottleneck Identification

Rule out the other stages
By giving all of them little or no work

FPS

If performance doesn’t change significantly, then you know
this is the bottleneck
Careful not to change the workload of this stage!

FPS

Copyright © NVIDIA Corporation 2004

Bottleneck Identification

Sample counters at different points along the
pipeline

Use NVPerfKit and NVPerfHUD
How much work performed by each unit, compare to the
maximum work possible

Copyright © NVIDIA Corporation 2004

NVGLExpert

What is it and what does it do?
Project status?

Copyright © NVIDIA Corporation 2004

What is it and what does it do?

Helps eliminate performance issues on the CPU
Instrumented OpenGL driver

Outputs information to file, console or debugger
Different groups and levels of information detail

Controlled by small GUI tool
Windows tool sets appropriate registry entries
Linux tool sets environment variables

What it can do (today)
Prints GL errors when the are raised
Indicates if the driver runs through a software fallback
Shows unexpected shader compile errors
Shows where your VBOs reside
Print reasons for GL_FRAMEBUFFER_UNSUPPORTED_EXT

Feature list will grow with future drivers

Copyright © NVIDIA Corporation 2004

Project Status

Will be delivered with next major driver release
Windows and Linux
Currently supports NV3x and NV4x architectures
What types of things are interesting?

NVGLExpert@nvidia.com

mailto:NVGLExpert@nvidia.com

Copyright © NVIDIA Corporation 2004

NVShaderPerf

What is NVShaderPerf?
What’s new with version 1.8?
What’s coming with version 2.0?

Copyright © NVIDIA Corporation 2004

v2f BumpReflectVS(a2v IN,
uniform float4x4 WorldViewProj,
uniform float4x4 World,
uniform float4x4 ViewIT)

{
v2f OUT;
// Position in screen space.
OUT.Position = mul(IN.Position, WorldViewProj);
// pass texture coordinates for fetching the normal map
OUT.TexCoord.xyz = IN.TexCoord;
OUT.TexCoord.w = 1.0;
// compute the 4x4 tranform from tangent space to object space
float3x3 TangentToObjSpace;
// first rows are the tangent and binormal scaled by the bump scale
TangentToObjSpace[0] = float3(IN.Tangent.x, IN.Binormal.x, IN.Normal.x);
TangentToObjSpace[1] = float3(IN.Tangent.y, IN.Binormal.y, IN.Normal.y);
TangentToObjSpace[2] = float3(IN.Tangent.z, IN.Binormal.z, IN.Normal.z);
OUT.TexCoord1.x = dot(World[0].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.y = dot(World[1].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.z = dot(World[2].xyz, TangentToObjSpace[0]);
OUT.TexCoord2.x = dot(World[0].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.y = dot(World[1].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.z = dot(World[2].xyz, TangentToObjSpace[1]);
OUT.TexCoord3.x = dot(World[0].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.y = dot(World[1].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.z = dot(World[2].xyz, TangentToObjSpace[2]);
float4 worldPos = mul(IN.Position, World);
// compute the eye vector (going from shaded point to eye) in cube space
float4 eyeVector = worldPos - ViewIT[3]; // view inv. transpose contains eye position in world space in last row.
OUT.TexCoord1.w = eyeVector.x;
OUT.TexCoord2.w = eyeVector.y;
OUT.TexCoord3.w = eyeVector.z;
return OUT;

}

///////////////// pixel shader //////////////////

float4 BumpReflectPS(v2f IN,
uniform sampler2D NormalMap,
uniform samplerCUBE EnvironmentMap,

uniform float BumpScale) : COLOR
{

// fetch the bump normal from the normal map
float3 normal = tex2D(NormalMap, IN.TexCoord.xy).xyz * 2.0 - 1.0;
normal = normalize(float3(normal.x * BumpScale, normal.y * BumpScale, normal.z));
// transform the bump normal into cube space
// then use the transformed normal and eye vector to compute a reflection vector
// used to fetch the cube map
// (we multiply by 2 only to increase brightness)
float3 eyevec = float3(IN.TexCoord1.w, IN.TexCoord2.w, IN.TexCoord3.w);
float3 worldNorm;
worldNorm.x = dot(IN.TexCoord1.xyz,normal);
worldNorm.y = dot(IN.TexCoord2.xyz,normal);
worldNorm.z = dot(IN.TexCoord3.xyz,normal);
float3 lookup = reflect(eyevec, worldNorm);
return texCUBE(EnvironmentMap, lookup);

}

NVShaderPerf

Inputs:
•HLSL
•GLSL (fragments)
•!!FP1.0
•!!ARBfp1.0
•PS1.x,PS2.x,PS3.x
•VS1.x,VS2.x, VS3.x
•Cg

NVShaderPerf

GPU Arch:
•GeForce 7800 GTX
•GeForce 6X00, FX series
•Quadro FX series

Outputs:Outputs:
••Resulting assembly codeResulting assembly code
••# of cycles# of cycles
••# of temporary registers# of temporary registers
••Pixel throughputPixel throughput
••Test all fp16 and all fp32Test all fp16 and all fp32

Copyright © NVIDIA Corporation 2004

NVShaderPerf: In your pipeline

Test current performance
against shader cycle budgets
test optimization opportunities

Automated regression analysis
Integrated in FX Composer 1.7

Copyright © NVIDIA Corporation 2004

FX Composer 1.7 – Shader Perf

•Disassembly

•Target GPU

•Driver version match

•Number of Cycles

•Number of Registers

•Pixel Throughput

•Forces all fp16 and all fp32
(gives performance bounds)

Copyright © NVIDIA Corporation 2004

NVShaderPerf 1.8

Support for GeForce 7800 GTX and Quadro FX 4500
Unified Compiler from ForceWare 77.72 driver
Better support for branching performance

Default computes maximum path through shader
Use –minbranch to compute minimum path

Copyright © NVIDIA Corporation 2004

///
// determine where the iris is and update normals, and lighting parameters to simulate iris geometry
///

float3 objCoord = objFlatCoord;
float3 objBumpNormal = normalize(f3tex2D(g_eyeNermel, v2f.UVtex0) * 2.0 - float3(1, 1, 1));
objBumpNormal = 0.350000 * objBumpNormal + (1 - 0.350000) * objFlatNormal;
half3 diffuseCol = h3tex2D(g_irisWhiteMap, v2f.UVtex0);
float specExp = 20.0;
half3 specularCol = h3tex2D(g_eyeSpecMap, v2f.UVtex0) * g_specAmount;

float tea;

float3 centerToSurfaceVec = objFlatNormal; // = normalize(v2f.objCoord)
float firstDot = centerToSurfaceVec.y; // = dot(centerToSurfaceVec, float3(0, 1, 0))
if(firstDot > 0.805000)
{

// We hit the iris. Do the math.

// we start with a ray from the eye to the surface of the eyeball, starting at the surface
float3 ray_dir = normalize(v2f.objCoord - objEyePos);
float3 ray_origin = v2f.objCoord;

// refract the ray before intersecting with the iris sphere
ray_dir = refract(ray_dir, objFlatNormal, g_refraction_u);

// first, see if the refracted ray would leave the eye before hitting the Iris.
float t_eyeballSurface = SphereIntersect(16.0, ray_origin, ray_dir); // 16 = 4 * 4, we assume the sphere of the eyeball is radius 4 here
float3 objPosOnEyeBall = ray_origin + t_eyeballSurface * ray_dir;
float3 centerToSurface2 = normalize(objPosOnEyeBall);

if(centerToSurface2.y > 0.805000)
{

// Display a blue color
diffuseCol = float3(0, 0, 0.7);
objBumpNormal = objFlatNormal;
specularCol = float3(0, 0, 0);
specExp = 10.0;

}
else
{

// transform into irisSphere space
ray_origin.y -= 5.109000;

// intersect with the Iris sphere
float t = SphereIntersect(9.650000, ray_origin, ray_dir);
float3 SphereSpaceIntersectCoord = ray_origin + t * ray_dir;
float3 irisNormal = normalize(-SphereSpaceIntersectCoord);

Eye Shader from Luna
Maximum branch takes 674 cycles
Minimum branch takes 193 cycles.

NVShaderPerf 1.8

Copyright © NVIDIA Corporation 2004

NVShaderPerf – version 2.0

Vertex throughput
GLSL vertex program
Multiple driver versions from one NVShaderPerf
What else do you need?

NVShaderPerf@nvidia.com

mailto:NVShaderPerf@nvidia.com

Copyright © NVIDIA Corporation 2004

NVPerfKit

What is NVPerfKit?
Associated Tools
NVPerfKit 2.0

Copyright © NVIDIA Corporation 2004

NVPerfKit: The Solution!

Why is my app running at 13FPS after CPU tuning?
How can I determine what is going in that GPU?
How come IHV engineers are able to figure it out?

Copyright © NVIDIA Corporation 2004

What is NVPerfKit?

Driver and GPU performance counters
Performance Data Helper (PDH)
Microsoft PIX for Windows

NVPerfHUD functionality inside any application
Application triggered sampling
OpenGL and Direct3D

Copyright © NVIDIA Corporation 2004

NVPerfKit: What it looks like...

Copyright © NVIDIA Corporation 2004

What is in the NVPerfKit package?

Instrumented Driver
Exposes GPU and Driver Performance Counters
Supports OpenGL and Direct3D
Supports SLI Counters

Tools
NVDevCPL
PIX Plugin
NVAppAuth

SDK
Sample Code
Helper Classes
Docs

Copyright © NVIDIA Corporation 2004

OpenGL Signals

Counter Description Official Name

FPS OGL FPS

Frame Time (1/FPS) OGL frame time mSec

Driver Sleep Time (driver waits for
GPU)

OGL frame mSec Sleeping

Copyright © NVIDIA Corporation 2004

Direct3D Signals

Counter Description Official Name

FPS D3D frame FPS

Frame Time (1/FPS) D3D frame time mSec

AGP Memory Used D3D frame agpmem MB

Video Memory Used D3D frame vidmem MB

Driver Time D3D frame mSec in driver

Driver Sleep Time (driver waits for GPU) D3D frame mSec Sleeping

Triangle Count D3D frame tris

Batch Count D3D frame num batches

Locked Render Targets Count D3D Locked Render Targets

Copyright © NVIDIA Corporation 2004

GPU Signals
Vertex Setup

Vertex Shader

Rasterizer

Pixel Shader

Frame Buffer

Texture

gpu_idle
vertex_attribute_count

vertex_shader_busy

culled_primitive_count
primitive_count
triangle_count
vertex_count

fast_z_count
shaded_pixel_count

shader_waits_for_texture

pixel_shader_busy

shader_waits_for_rop

Supported GPUs
Quadro FX 4500
GeForce 7800 GTX
GeForce 6800 Ultra & GT
GeForce 6600

GPU

Copyright © NVIDIA Corporation 2004

NVPerfKit Demo: Pixel Shader Bound

Copyright © NVIDIA Corporation 2004

NVPerfKit Demo: Texture Bound

Copyright © NVIDIA Corporation 2004

What is PDH? What is Perfmon?

PDH: Performance Data Helper for Windows
Win32 API for exposing performance data to user
applications
Standardized interface with many providers and clients

Perfmon: (aka Microsoft Management Console)
Win32 PDH client application
Low frequency sampling (1X/s)
Displays PDH based counter values:

OS: CPU usage, memory usage, swap file usage, network
stats, etc.
NVIDIA: all of the signals exported by NVPerfKit

Copyright © NVIDIA Corporation 2004

Associated Tools: Perfmon

Copyright © NVIDIA Corporation 2004

Associated Tools: NVDevCPL

Copyright © NVIDIA Corporation 2004

Associated Tools: NVIDIA Plug-In for
Microsoft PIX for Windows

Copyright © NVIDIA Corporation 2004

Associated Tools: NVIDIA Plug-In for
Microsoft PIX for Windows

Copyright © NVIDIA Corporation 2004

Helper Classes and Code Samples

CPDHHelper: simplifies using PDH

int nIndex = pdh.add(“countername”);
pdh.sample();
float fValue = pdh.value(nIndex);

CTrace: ring buffer for holding performance data
CTraceDisplay: simple API agnostic graphing library
OpenGL and Direct3D sample apps

Integration of helper classes
Security mechanism usage

Copyright © NVIDIA Corporation 2004

Graphic Remedy’s gDEBugger 2.0

Copyright © NVIDIA Corporation 2004

NVPerfKit 2.0

Simplified Experiments
Targeted analysis to ease bottleneck determination

Supplement PDH based single counters
Multi-pass experiments where multiple GPU counters are
needed to compute results
Exposes all of the power of NVPerfHUD 4.0 to developers

More OpenGL and Direct3D counters
NVPerfHUD 4.0
Linux support

Copyright © NVIDIA Corporation 2004

Simplified Experiments
Usage:
NVPMAddCounter(“ps_utilization”);
NVPMAddCounter(“vs_utilization”);
NVPMAddCounter(“gpu_idle”);
NVPMAllocObjects(50);

int nNumPasses;
NVPMBeginExperiment(&nNumPasses);
for(int ii = 0; ii < nNumPasses; ++ii) {

NVPMBeginPass(ii);

// Draw the frame
NVPMBeginObject(0);
// DPs associated with object 0
NVPMEndObject(0);

NVPMBeginObject(1);
// DPs associated with object 1
NVPMEndObject(1);

// ...
NVPMEndPass(ii);

}
NVPMEndExperiment();
NVPMGetCounterValue(“ps_utilization”, 0, &fPSSol); // 0 == object id
NVPMGetCounterValue(“vs_utilization”, 0, &fVSSol);

NVPerfHUD 4.0

Raul Aguaviva

Copyright © NVIDIA Corporation 2004

Agenda

What is NVPerfHUD?
How does it work?
Demo
Schedule

Copyright © NVIDIA Corporation 2004

What is NVPerfHUD?

Stands for: PERFormance Heads Up Display
Overlays graphs and dialogs on top of your
application
Interactive HUD

Copyright © NVIDIA Corporation 2004

What is NVPerfHUD?

4 different types of HUD
Performance Dashboard
Debug Console
Frame Debugger
Frame Profiler (New in 4.0)

Copyright © NVIDIA Corporation 2004

How to use it

Run your application with NVPerfHUD
Use it as you normally do until you find:

Functional problem: use the debugger
Low FPS: use the profiler

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Resources monitored
Textures
Volume Textures
Cube textures
Vertex Buffers
Index buffers
Stencil and depth surfaces

Resource monitor

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Speed control

Copyright © NVIDIA Corporation 2004

The simplified graphics pipeline

Vertex
Assembly Vertex Shader Pixel Shader Raster OPerations

Copyright © NVIDIA Corporation 2004

Performance Dashboard Demo

Install
Configure
Drag & Drop

Copyright © NVIDIA Corporation 2004

Debug Console

Copyright © NVIDIA Corporation 2004

Frame Debugger

Demo

Copyright © NVIDIA Corporation 2004

Frame Debugger, advanced view

Demo

Copyright © NVIDIA Corporation 2004

Frame Profiler

Measures performance counters
strategy

Copyright © NVIDIA Corporation 2004

Frame Profiler, measuring

NVPerfHUD uses NVPerfKit
uses ~40 Performance Counters (PC’s)

Can not read all of them at the same time
Need to render THE SAME FRAME until all
the PC’s are read

Copyright © NVIDIA Corporation 2004

Frame Profiler, strategy

Optimization Strategy:
Group by state is roughly grouping by bottleneck
These groups are called “state buckets”

Procedure
Group draw calls by rendering state into state buckets
Identify the bottleneck of the most expensive state bucket

Solved by NVPerfHUD
Cure the bottleneck with a common corrective action

Copyright © NVIDIA Corporation 2004

Frame Profiler Demo

Copyright © NVIDIA Corporation 2004

Frame Profiler Demo, advanced view

Copyright © NVIDIA Corporation 2004

About freezing the application

Only possible if the application uses time-based
animation

Stop the clock
Intercept: QueryPerformanceCounter(), timeGetTime()
NO RDTSC!!

Pos += V * DeltaTime

Copyright © NVIDIA Corporation 2004

Schedule

Beta: August
Release : September

Copyright © NVIDIA Corporation 2004

Copyright © NVIDIA Corporation 2004

Questions?

Developer tools DVDs available at our booth
Online: http://developer.nvidia.com

NVGLExpert@nvidia.com
NVShaderPerf@nvidia.com
NVPerfKIT@nvidia.com
NVPerfHUD@nvidia.com
FXComposer@nvidia.com

http://developer.nvidia.com/
mailto:NVGLExpert@nvidia.com
mailto:NVShaderPerf@nvidia.com
mailto:NVPerfKIT@nvidia.com
mailto:NVPerfHUD@nvidia.com
mailto:FXComposer@nvidia.com

SLI
Matthias M Wloka

NVIDIA Corporation

Copyright © NVIDIA Corporation 2004

SLI: Scalable Link Interface

Plug 2 identical GPUs
into PCI-E motherboard

Driver still reports only
one (logical) device

Renders up to 1.9x faster

Video memory does NOT double

Copyright © NVIDIA Corporation 2004

Don’t Care For High-End Niche Markets

SLI becoming mainstream:
GeForce 6600 GT SLI
In addition to 6800 GT and 6800 Ultra

Dual core boards
Gigabyte 3D1:
Dual 6600 GT

SLI motherboards
sold to date: > 350,000 units

That’s > 25% of total nForce 4

Copyright © NVIDIA Corporation 2004

Game Development Cycle

2 years (or more)
CPU performance doubles (or less)
GPU performance quadruples

CPU/GPU balance shifts!
Worse: CPU-hungry modules come later:
AI, physics, full game play

SLI hints at future GPU vs. CPU balance
For target ‘mainstream’ spec

Copyright © NVIDIA Corporation 2004

The Last Couple of Years

Courtesy Ian Buck, Stanford UniversityCourtesy Ian Buck, Stanford University

Copyright © NVIDIA Corporation 2004

Ok, How Does SLI Work?

Compatibility mode:
Only uses one GPU
No SLI benefits

Alternate frame rendering (AFR)

Split frame rendering (SFR)

Copyright © NVIDIA Corporation 2004

AFR

Each GPU works on its own frame

Scan-out toggles where to read framebuffer from

GPU 0:GPU 0:

GPU 1:GPU 1:

1

2

…3

4 …

Copyright © NVIDIA Corporation 2004

General Rendering Case for AFR

If frame not self-contained:
Push necessary data to other GPU
E.g., updating render-to-texture targets only every other
frame

Pushing data to other GPU is overhead
Hence not 2x speed-up

Copyright © NVIDIA Corporation 2004

AFR Advantages

All work is parallelized
Pixel fill, raster, vertex transform

Preferred SLI mode

Works best when frame self-contained
No prior work is re-used
No communications overhead between GPUs

Copyright © NVIDIA Corporation 2004

Both GPUs work on the same frame
GPU 0 renders top portion
GPU 1 renders bottom portion

Scan-out combines framebuffer data

21 3 …

SFR

GPU 0

GPU 1

Copyright © NVIDIA Corporation 2004

General Rendering Case for SFR

Load-balance ‘top’ vs. ‘bottom’
If one GPU took longer to render
Adjust load accordingly (make it work less)

Clip vertices to top/bottom portions
Avoids both GPUs processing all vertices
But not perfect

Still requires data sharing:
E.g., render to texture

Copyright © NVIDIA Corporation 2004

SFR Compared to AFR

SFR works even when limiting number of frames
buffered

Or when AFR otherwise fails

In general, SFR has more communications
overhead

Applications with heavy vertex load benefit less
from SFR

Copyright © NVIDIA Corporation 2004

How Do I Detect SLI Systems?

NVCpl API:
NVIDIA-specific API supported by all NV drivers

Function support for:
Detecting that NVCpl API is available
Bus mode (PCI/AGP/PCI-E) and rate (1x-8x)
Video RAM size
SLI

Copyright © NVIDIA Corporation 2004

NVCpl API SLI Detection

SDK sample and full documentation available

HINSTANCE hLib = ::LoadLibrary("NVCPL.dll");

NvCplGetDataIntType NvCplGetDataInt;
NvCplGetDataInt =

(NvCplGetDataIntType)::GetProcAddress(hLib,
"NvCplGetDataInt");

long numSLIGPUs = 0L;
NvCplGetDataInt(NVCPL_API_NUMBER_OF_SLI_GPUS,

&numSLIGPUs);

Copyright © NVIDIA Corporation 2004

Forcing SLI Support In Your Game

Use NVCpl
NvCplSetDataInt() sets
AFR, SFR, Compatibility mode
See SDK sample

Modify or create a profile:
http://nzone.com/object/nzone_sli_appprofile.html
End-users can create profiles as well

http://nzone.com/object/nzone_sli_appprofile.html

Copyright © NVIDIA Corporation 2004

Overview: Things Interfering with SLI

CPU-bound applications
Or vsync enabled

Limiting number of frames buffered

Communications overhead

Copyright © NVIDIA Corporation 2004

SLI cannot help

Reduce CPU work or better:

Move CPU work onto the GPU
See http://GPGPU.org

Don’t throttle frame-rate

CPU-Bound Applications

http://gpgpu.org/

Copyright © NVIDIA Corporation 2004

VSync Enabled

Throttles frame-rate to monitor refresh

Enabling triple-buffering does NOT offset enabling
vsync:

If render-rate faster than monitor refresh,
Then vsync still gates GPU

Worse, triple-buffering
Increases lag
Consumes (much) more video-memory

Copyright © NVIDIA Corporation 2004

Limiting Number of Frames Buffered

Some apps allow at most one frame buffered
To reduce lag
Via event queries
Don’t lock/read back-buffer: Causes CPU stall!

Disables AFR SLI speed-up

But SLI is up to ~1.9x faster
I.e., SLI systems ~1.9x less lag

Copyright © NVIDIA Corporation 2004

Why Locking the Back-Buffer Is Bad

Frame n+1Frame n+1Frame nFrame n ……

BackBack--buffer lock: buffer lock:
wait for GPU to finish rendering wait for GPU to finish rendering

CPUCPU

GPUGPU

CPUCPU

GPUGPU

Copyright © NVIDIA Corporation 2004

Limit Frames Buffered to Number of GPUs

Single GPU system:
Buffer at most 1 frame

When detecting SLI system:
Buffer at most 2 frame

Copyright © NVIDIA Corporation 2004

The Basic Pipeline

CPUCPU GPU0GPU0Push BufferPush Buffer

Frames flow through pipe over time:Frames flow through pipe over time:

CPUCPU GPU0GPU0Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer

TimeTime

Frame nFrame n

Frame n+1Frame n+1

Frame n+2Frame n+2

Frame n+3Frame n+3

1 Frame = L ms1 Frame = L ms

Copyright © NVIDIA Corporation 2004

Single GPU Latency

Total latency: 3L msTotal latency: 3L ms

CPUCPU GPU0GPU0Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer

TimeTime

User inputs dataUser inputs data

CPU processes itCPU processes it

PB buffers itPB buffers it

GPU processes itGPU processes it
Result visibleResult visible

1 Frame = L ms1 Frame = L ms

Copyright © NVIDIA Corporation 2004

Latency Assumptions

GPU limited
If not, then push buffer contains <1 frame
No point in limiting push buffer

SLI is 2x faster
Can relax this later!

Increase frames buffered to 2:

CPUCPU GPU0GPU0Push BufferPush Buffer Push BufferPush Buffer GPU1GPU1

Copyright © NVIDIA Corporation 2004

Frames Flowing Through AFR SLI

TimeTime

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

Push BufferPush Buffer

Push BufferPush Buffer

Push BufferPush Buffer

Push BufferPush Buffer

Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1Push BufferPush Buffer

Frame nFrame n

Frame n+1Frame n+1

Frame n+2Frame n+2

Frame n+3Frame n+3

Frame n+4Frame n+4

Frame n+5Frame n+5

1 Frame = 1 Frame =
L/2L/2 msms

Copyright © NVIDIA Corporation 2004

AFR SLI Latency

TimeTime

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1

Push BufferPush Buffer

Push BufferPush Buffer

Push BufferPush Buffer

Push BufferPush Buffer

Push BufferPush Buffer

CPUCPU GPU0GPU0Push BufferPush Buffer GPU1GPU1Push BufferPush Buffer

User inputs dataUser inputs data
CPU processes itCPU processes it

Result visibleResult visible
GPU processes itGPU processes it

PB buffers itPB buffers it

PB buffers itPB buffers it

GPU processes itGPU processes it

Total latency: 5Total latency: 5∙∙L/2 msL/2 ms

1 Frame = 1 Frame =
L/2L/2 msms

Copyright © NVIDIA Corporation 2004

Latency Comparison: Single vs. AFR

Single GPU latency: 3L ms
3 frames of length L ms

AFR SLI GPU latency: 5 L/2 = 2.5L ms!
5 frames of length L/2 ms
(i.e., double frame rate)
Despite buffering twice as many frames

SLI speed-up only needs to be 1.66!
3L = 5L/x → x = 5L/3L = 1.66
Most games speed-up by ~1.8

Copyright © NVIDIA Corporation 2004

SFR Latency?

SFR unaffected by buffering one frame

SFR speed-up directly reduces lag
If SFR 2x faster,
Then latency 2x shorter

Copyright © NVIDIA Corporation 2004

Even Better: Limit Lag Based on FPS

If your game runs at over 100 fps
Reasonable to buffer 3 frames

If your game runs at less than 15 fps
Only allow one frame to buffer

Faster SLI system gets automatic benefit

Our drivers already do that
> 15 fps buffer 3 frames as usual
< 15fps reduce number of frames buffered

Copyright © NVIDIA Corporation 2004

Overview: Things Interfering with SLI

CPU-bound applications
Or vsync enabled

Limiting number of frames buffered

Communications overhead

Copyright © NVIDIA Corporation 2004

Communications Overhead

Peer to peer SLI memory transfers
Transfer itself costs bandwidth and time
GPU stalls waiting for transfer to complete

Or replicate operations on both GPUs
For example, render to texture

Relevant resources:
Vertex/index buffers
Textures
Render targets

Copyright © NVIDIA Corporation 2004

Uploading Resources On the Fly

Remember video RAM is duplicated

Need to transfer to both video RAMs

Not much developers can do to avoid this
Oh well

Copyright © NVIDIA Corporation 2004

Render Targets

Clear Z
Always clear Z!

Clear color when detecting SLI
Tells driver that the old data is irrelevant
No need to transfer old data across GPUs

Don’t reuse data across frames
Make frames self sufficient, i.e., independent from one
another

Copyright © NVIDIA Corporation 2004

Update-Skipping “Optimization”

Added SLI overhead:

GPU 1 stalls until GPU 0 RTT finishes and transfers
Or GPU 1 duplicates RTT operation
Might as well do right thing when on SLI

Frame nFrame n Frame n+1Frame n+1 Frame n+2Frame n+2 Frame n+3Frame n+3

Needs RTTNeeds RTT Needs RTTNeeds RTT

GPU 0GPU 0 GPU 1GPU 1 GPU 0GPU 0 GPU 1GPU 1

RTTRTT Use TUse T Use TUse T RTTRTT Use TUse T Use TUse T

Copyright © NVIDIA Corporation 2004

RT1RT1 Use T1Use T1 RT1RT1 Use T1Use T1

Render Early, Use Late!

GPU 0:GPU 0:

GPU 1:GPU 1: Use T1Use T1 Use T1Use T1

Avoid sync-stalls
In AFR SLI as shown
And in single GPU mode
But still has communications overhead

Copyright © NVIDIA Corporation 2004

Really Bad: Use Early, Render Late

Instead: Ring-buffer textures
when on SLI!

RT1RT1Use T1Use T1GPU 0:GPU 0:

GPU 1:GPU 1:

RT1RT1Use T1Use T1

RT1RT1Use T1Use T1 RT1RT1Use T1Use T1

RT1RT1Use T1Use T1GPU 0:GPU 0:

GPU 1:GPU 1:

RT1RT1Use T1Use T1

RT2RT2Use T2Use T2 RT2RT2Use T2Use T2

Copyright © NVIDIA Corporation 2004

SLI Performance Debug Support

SLI support in NVPerfKit:
Pluggable hardware and driver signals for
PIX
perfmon.exe
pdh (your game, VTune…)

“NVIDIA Performance Analysis Tools”
Today, 2:30pm - 3:30pm

Copyright © NVIDIA Corporation 2004

Supported SLI Performance Signals

Total SLI peer-to-peer bytes
Total SLI peer-to-peer transactions

Above originating from
Vertex/index buffers: bytes and transactions
Textures: bytes and transactions
Render targets: bytes and transactions

Copyright © NVIDIA Corporation 2004

Questions?

GPU Programming Guide, Chapter 8
http://developer.nvidia.com/object/gpu_programmin
g_guide.html

http://developer.nvidia.com
The Source for GPU Programming

mwloka@nvidia.com

Slides available online

http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/
mailto:mwloka@nvidia.com

Copyright © NVIDIA Corporation 2004

Copyright © NVIDIA Corporation 2004

NVIDIA SDK

Hundreds of code samples and effects that help
you take advantage of the latest in graphics
technology.

Tons of updated and all-new DirectX and OpenGL code samples with
full source code and helpful whitepapers:

Transparency AA, GPU Cloth, Geometry Instancing, Rainbow Fogbow,
2xFP16 HRD, Perspective Shadow Maps, Texture Atlas Utility, ...

Hundreds of effects, complete with
custom geometry, animation and more:

Shadows, PCSS, Skin, Plastics, Flame/Fire, Glow,
Image Filters, HLSL Debugging Techniques,
Texture BRDFs, Texture Displacements,
HDR Tonemapping, and even a simple Ray Tracer!

The Source for GPU Programming

Copyright © NVIDIA Corporation 2004

GPU Gems 2
Programming Techniques for High-Performance
Graphics and General-Purpose Computation

880 full-color pages
330 figures
Hard cover
$59.99
Experts from universities and industry

Geometric Complexity
Shading, Lighting, and Shadows
High-Quality Rendering

General Purpose Computation on
GPUs: A Primer
Image-Oriented Computing
Simulation and Numerical Algorithms

Graphics ProgrammingGraphics Programming GPGPU ProgrammingGPGPU Programming

	Performance Tools
	Performance Tools Agenda
	GPU architecture at a glance
	GPU Pipelined Architecture (simplified view)
	Bottleneck Identification
	Bottleneck Identification
	NVGLExpert
	What is it and what does it do?
	Project Status
	NVShaderPerf
	NVShaderPerf
	NVShaderPerf: In your pipeline
	FX Composer 1.7 – Shader Perf
	NVShaderPerf 1.8
	NVShaderPerf 1.8
	NVShaderPerf – version 2.0
	NVPerfKit
	NVPerfKit: The Solution!
	What is NVPerfKit?
	NVPerfKit: What it looks like...
	What is in the NVPerfKit package?
	OpenGL Signals
	Direct3D Signals
	GPU Signals
	NVPerfKit Demo: Pixel Shader Bound
	NVPerfKit Demo: Texture Bound
	What is PDH? What is Perfmon?
	Associated Tools: Perfmon
	Associated Tools: NVDevCPL
	Associated Tools: NVIDIA Plug-In for Microsoft PIX for Windows
	Associated Tools: NVIDIA Plug-In for Microsoft PIX for Windows
	Helper Classes and Code Samples
	Graphic Remedy’s gDEBugger 2.0
	NVPerfKit 2.0
	Simplified Experiments
	NVPerfHUD 4.0
	Agenda
	What is NVPerfHUD?
	What is NVPerfHUD?
	How to use it
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	The simplified graphics pipeline
	Performance Dashboard Demo
	Debug Console
	Frame Debugger
	Frame Debugger, advanced view
	Frame Profiler
	Frame Profiler, measuring
	Frame Profiler, strategy
	Frame Profiler Demo
	Frame Profiler Demo, advanced view
	About freezing the application
	Schedule
	Questions?
	SLI
	SLI: Scalable Link Interface
	Don’t Care For High-End Niche Markets
	Game Development Cycle
	The Last Couple of Years
	Ok, How Does SLI Work?
	AFR
	General Rendering Case for AFR
	AFR Advantages
	SFR
	General Rendering Case for SFR
	SFR Compared to AFR
	How Do I Detect SLI Systems?
	NVCpl API SLI Detection
	Forcing SLI Support In Your Game
	Overview: Things Interfering with SLI
	CPU-Bound Applications
	VSync Enabled
	Limiting Number of Frames Buffered
	Why Locking the Back-Buffer Is Bad
	Limit Frames Buffered to Number of GPUs
	The Basic Pipeline
	Single GPU Latency
	Latency Assumptions
	Frames Flowing Through AFR SLI
	AFR SLI Latency
	Latency Comparison: Single vs. AFR
	SFR Latency?
	Even Better: Limit Lag Based on FPS
	Overview: Things Interfering with SLI
	Communications Overhead
	Uploading Resources On the Fly
	Render Targets
	Update-Skipping “Optimization”
	Render Early, Use Late!
	Really Bad: Use Early, Render Late
	SLI Performance Debug Support
	Supported SLI Performance Signals
	Questions?
	NVIDIA SDK
	GPU Gems 2 �Programming Techniques for High-Performance Graphics and General-Purpose Computation

