
Cloth Simulation on the GPUCloth Simulation on the GPU

Cyril Zeller

NVIDIA Corporation



OverviewOverview

• A method to simulate cloth on any GPU 
supporting Shader Model 3 (Quadro FX 4500, 
4400, 3400, 1400, 540, GeForce 6 and above)
– Takes advantage of the massive parallel 

computation horsepower of GPUs

– Geared toward performance and visual realism, 
not physical accuracy

– Suitable to 3D games and virtual reality systems



OutlineOutline

• Demo

• Algorithm outline

• GPU implementation



DemoDemo

• Available at 
http://download.developer.nvidia.com/developer/SDK/
Individual_Samples/samples.html#Cloth



Cloth as a Set of ParticlesCloth as a Set of Particles

• Each particle is subject to:
– A force (gravity, wind, drag, etc.)

– Various constraints:
• To maintain overall shape (springs)

• To prevent interpenetration with the environment

• Constraints are resolved by relaxation

• CPU version successfully used in games:
Jakobsen, T. “Advanced character physics”, GDC 01



ForceForce

• Verlet integration:
P(t + Δt) = P(t) + k (P(t) – P(t - Δt)) + Δt2 F(t)

• Δt: simulation time step

• P(t): particle position

• F(t): force

• k: damping coefficient

• No force applied to fixed or user-moved 
particles



• Particles are linked by springs:

• A spring is simulated as a distance constraint
between two particles

Shear springs

Spring ConstraintsSpring Constraints

Structural springs



• A distance constraint between two particles 
is enforced by moving them away or towards 
each other:
– If both particles are free:

– If one particle is fixed:

Distance ConstraintDistance Constraint

Distance 
at rest



Collision ConstraintsCollision Constraints

• The environment is defined as a set of 
collision objects (planes, spheres, boxes, 
ellipsoids)

• A collision constraint between a particle and 
a collision object is enforced by moving the 
particle outside the object:



Algorithm OutlineAlgorithm Outline

• For every simulation time step:
– For every particle that isn’t fixed or user-moved:

• Apply force

– For every relaxation step:
• For every spring constraint:

– Enforce distance constraint

• For every particle:

– For every collision object:

› If the particle is inside, move it outside



GPU Implementation 
Overview
GPU Implementation 
Overview

• The particle positions and normals are stored 
into floating-point textures

• The CPU never reads back these textures!

• At every frame:
– GPU simulation: Update the position and normal 

textures

– GPU rendering: Render using vertex texture fetch
(available on Shader Model 3.0 and above)



• Two textures are required: Current and New

• Positions get updated through a series of 
draw calls

• Each draw call is of the form:
– Set the appropriate pixel shader

– Set New as the render target

– Draw a quad covering the entire render target

– Swap Current and New

GPU Simulation: Updating 
the Position Texture
GPU Simulation: Updating 
the Position Texture

Pixel
shader

Current

New



GPU Simulation: ForceGPU Simulation: Force

• One draw call

• Verlet integration requires three textures:

Force
pixel

shader

New

Current Old



• Interdependent constraints must be enforced 
sequentially for the relaxation to converge

• So constraints are divided into 8 groups of 
independent constraints

• One draw call per group

GPU Simulation: Spring 
Constraints
GPU Simulation: Spring 
Constraints

One draw call Another draw call



• 4 draw calls for 
the structural 
springs:

GPU Simulation: Spring 
Constraints
GPU Simulation: Spring 
Constraints

• 4 draw calls for the shear springs:



GPU Simulation: Collision 
Constraints
GPU Simulation: Collision 
Constraints

• One draw call

• The parameters of each collision object 
(center, dimension) are stored into 1D-
textures:
– One texture per geometric type

– Textures are necessary for looping through the 
collision objects since Shader Model 3.0 does not 
support indexing of constant registers



GPU Simulation: Cloth 
Cutting
GPU Simulation: Cloth 
Cutting

• In cut mode each mouse 
motion defines a cutter triangle

• A pixel shader intersects the 
cutter with each cloth triangle

• The result is read back to the 
CPU and cut triangles and 
springs are removed



Cloth with a Generic ShapeCloth with a Generic Shape

• Non-rectangular mesh or mesh 
with holes:
– Create a geometry image from the 

mesh [Gu et al. “Geometry Images” Siggraph 02]

– Handle split vertices by:
• Enforcing spring constraints attached to 

each duplicate

• Averaging the resulting positions before 
enforcing the collision constraints



PerformancePerformance

• 400 frames per second

• On a GeForce 6800 Ultra

• With:
– 100 x 100 particles

– One relaxation step

– Structural and shear springs



Future WorkFuture Work

• Better collision detection

• Self-collision detection

• Simulation level of details


	Cloth Simulation on the GPU
	Overview
	Outline
	Demo
	Cloth as a Set of Particles
	Force
	Spring Constraints
	Distance Constraint
	Collision Constraints
	Algorithm Outline
	GPU Implementation Overview
	GPU Simulation: Updating the Position Texture
	GPU Simulation: Force
	GPU Simulation: Spring Constraints
	GPU Simulation: Spring Constraints
	GPU Simulation: Collision Constraints
	GPU Simulation: Cloth Cutting
	Cloth with a Generic Shape
	Performance
	Future Work

