


GPU-Accelerated
Production Rendering

Larry Gritz
Digital Film Group

NVIDIA



Acknowledgements

• Gelato development:

Dan Wexler, Eric Enderton, Philip Nemec, Radomir Mech, 
John Schlag, Jonathan Rice, Sharif Elcott

• NVIDIA Digital Film Group: 

Beth Loughney, Laura Dohrmann, Cynthia Dueltgen, Dave 
Wilton, Matt Jefferson



Production pipeline

  Story/
Art  design

Per
object

Per
shot

Modeling/
articulation

Layout

Shading

Animation Lighting

Rendering

Compositing

Film

Live Action
Plates



Film != Games

• Games

– Fixed frame rate – quality negotiable

– Render 10^5 frames x many games x 10^6 users

– -> optimize for rendering

– -> pre-computation at dev time inconsequential

• Film

– Fixed quality – frame rate unimportant (mostly)

– Render once, deliver film

– Humans are bottleneck – maximum flexibility more important 
than speed -> optimize for development

– Artist in the loop for every frame



Why Film Rendering Will 
Never be Realtime

• Games Lie

• Amdahl’s Law

• Blinn’s Law



Production Renderers

• Geometric Primitives & Geometric Complexity

• Texture Complexity & Quality

• Displacement

• Global Illumination

• Flexibility

• Programmable Shading

• Performance

• Image quality

• Robustness



Powerful Shading Language

• Rich data types, including strings, arbitrary-length 
arrays

• Refer to textures & coord systems by name

• Don’t want users exposed to hardware details 
(reduced precision, arbitrary limits, lack of loops)

• Need to call user-supplied code (DSO’s, etc.)

• Arbitrary type & number of user-supplied parameters

• Derivs better than fw-bw-difference

• Match “usual” programming model



Image quality

• Careful sampling & filtering

• NO visible aliasing is acceptable, in any dimension.

• No tessellation or other geometric artifacts

• Motion blur

–Transformation and deformation blur.

–No visible strobing or excessive noise

• Depth of field

• No excuses for everything looking like plastic

• Eschew all artifacts



Robustness

• Orthogonal feature set

• Must react well and predictably to unexpected input

• Must have vanishingly few bugs

–120,000 frames x 3M pels x multiple layers

–A 1-in-100,000,000 pixel crasher bug means 
thousands of unexplained crashes

• Must handle massive complexity

• Must scale gracefully, no hard limits

• Today's unreasonable input is tomorrow's trivial “toy 
scene”



Where GFX HW Succeeds

• Floating point throughout (almost)

• Some programmability (a whole lot more 
than there used to be)

• Rapid speed increase – doubling every 6-12 
months



Where GFX HW Falls Short

• No high-order curved surfaces or procedural 
geometry, no pixel-frequency displacement

• Very inefficient for pixel- or subpixel-sized geom

• Antialiasing

– Not enough samples

– Not good enough filtering

– No motion blur of depth of field

• Texture

– Limited texture memory, size and number of textures



Where GFX HW Falls Short

• Procedural shading features:

– Limited memory (especially writable memory)

– Limited instructions

– Crude derivatives

– Too context-dependent

– Lack of control flow

• Rapid versioning, little stability

• No late/lazy binding

• No back doors





Gelato Goals

• Implement full production rendering features

– Curved geom, flawless antialiasing, motion blur

– Ray tracing (GI, ambient occlusion, etc.)

– No limits (tex, mem, etc.)

• Accelerate with HW wherever possible

– But NEVER compromise on features, quality, flexibility

• Do not expose users to any HW limitations

– Especially not require two sets of shaders

– Stable, high-level interfaces

• Non-goal: real-time



Gelato Status

• 3 years in development

• Tested in studios since September 2003

• 1.0 Released April 04, 1.1 Nov 04, 1.2 Apr 05

• 2.0 beta soon

• Functionality roughly equal to leading SW 
renderers and diverging

• 2x faster than leading SW renderers and diverging

• Requires Quadro FX 

• film.nvidia.com



Hard Design Choices

• Realtime vs. offline 

• “Preview” vs. final frame

• In memory vs. scene larger than memory

• Limits & fast vs. no limits but higher 
overhead

• Allowing CPU fallback vs. requiring GPU

• HW shading language (Cg, etc.) vs. custom 
shading



GPU Programming Model

• Send scene geometry to GPU

OR

• Send single camera-facing quad to GPU

–Substrate for fragment programs

–Think of GPU as fast parallel FP accelerator

• GPU programming is hard!

• Programming environment still not mature



REYES-like Architecture

BBOX
CULL

GEOM

GRID
CULL

GRIDS

big

small

DICE +
DISPLACE

SHADE

HIDE

SPLIT



Hider Requirements

Comparable quality to CPU-only renderers: 
– Depth of field and motion blur

– Transparency

– Filters with wide support

– Robustness for real production scenes

– Occlusion culling to avoid excess shading

– Spectral opacity and arbitrary outputs

– Complete feature set (shadows, GI, RT…)



Hider Architectural Overview

• REYES-style geometry processing

• Supersampling for anti-aliasing

• Accumulation buffer for MB & DOF

• Enhanced depth peeling for transparency

• Two-pass downsampling for filtering

• Occlusion query for culling



Hiding Algorithm

FILTER

OUTPUT

ALL
OPAQUE

ALL
TRANSPARENT

DEPTH
PEEL

ACCUMULATE

MB/DOF

more
passes

done

done

more
layers



Grids, Pixels & Samples



Grids, Pixels & Samples



Grids, Pixels & Samples



Why Param-space shading?

• De-couple shading and hiding complexity

– Typical 64+ spatial x 64+ temporal samples x DP x SO

– Marginal shading cost per sample is zero

• Good derivatives

– Means good texture lookups, shader AA

• Displacement & surface/lights in same space

• More stable in motion

• Can use CPU when GPU unable to do shading 
operations





Ethan Summers & Shiew Yeu Loh



Ethan Summers & Shiew Yeu Loh



Performance



Spatial Samples

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Samples/Pixel

S
ec

o
n

d
s

Gelato 1.1 Stochastic CPU



Temporal Samples

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Time Samples

S
ec

o
n

d
s

Gelato 1.1 Stochastic CPU



Image quality: spatial



Image quality: temporal



Depth peeling

• Render one pass for each visible depth layer

– Use previous z buffer to mask closer surfaces

• O(n^2)



Transparency



Transparency

• Opaque pre-processing

– One additional texture-z test

– Reduces number of depth peeling passes

– Occlusion culling remove hidden surfaces



Z-Batches

• For N grids processed in batches of B grids:

     O((N/B)B2) = O(BN) = O(N)

• Problem: grids overlap into multiple batches

• Opacity thresholding between batches



Transparency



Transparency Artifacts



Poor Performance Cases



Extensions

• Two-pass depth peel for average-z

• Volumetric shadow map generation

• Multiple camera (stereo) rendering

• Workqueue-based latency hiding

• Adaptive motion and DOF sampling

• Fast Relighting



Challenges

• Hiding Latency

– Occlusion Query

– Orthogonal computations

• Hybrid Algorithms

– Batch size vs. excessive computation

– Starving and Readback

• Programming Environment

– Debugging and profiling

– Support and stability



GPU Programming – Sort 
Values

• Five minutes to write

• Every programmer in the 
world understands the 
code

• Complex sorts are well 
understood

• Days or weeks to write

• Code is hard to read

• Won’t run next year

• Best methods not well 
understood yet

CPU GPU



Future

• GPU’s will be standard, even on compute farm

– Like FPU: once exotic, now essential

• Many apps will use GPU’s

– Even things by far not interactive graphics

– Compositing

– Cloth and fluid simulation

• Stop looking at CPU vs. GPU

– Think about von Neumann AND Stream processor

– Divide work naturally, load balance

– Try to leave no computational resource unused



More info

• Two-Pass Filtered Downsampling    
[Wexler, Enderton ’05] Graphics Gems II

• Gelato at NVIDIA Booth

• film.nvidia.com

• lgritz@nvidia.com



Q&A


