
GPU Production Rendering

Larry Gritz
NVIDIA

April 22, 2005

Chapter 9

GPU Production Rendering

Larry Gritz
NVIDIA
lgritz@nvidia.com

9.1 Introduction

This chapter is not about realtime rendering. It’s about a world in which rendering takes sec-
onds, minutes, or hours. It’s about users who require features that are extremely difficult to
implement on modern graphics hardware. But we’d still like to take advantage of the tremen-
dous horsepower that GPUs afford us.

First, we’ll discuss the arcane world of production rendering for film (and other non-game
high-end uses) — what people need from a film renderer, and how this is different from a game
engine.

Next, we’ll dive into the gory details about how GPUs were used for certain features in
NVIDIA’s GelatoTMrenderer. There are some clever techniques here, but it’s also an object
lesson about how insanely tricky it is to get GPUs to render in ways they weren’t designed for,
though occasionally if you do it right, you can get fantastic performance benefits.

NVIDIA’s Gelato renderer is an offline (batch-oriented, non-realtime) renderer designed to
render absurdly complex scenes at high enough quality to be used in feature film visual effects
and animation. Unique among similarly capable renderers (as of this writing), itrequiresa
GPU, which it uses to accelerate various of its algorithms. But it is not using graphics hardware
for previews or reduced-quality rendering — it uses the GPU to help generate the highest quality
final pixels. Indeed, part of the requirement of the product is that we use GPU where we can,
but never allow hardware usage to sacrifice image quality, flexibility, or feature set.

The bottom line is that we’ve spent the past few years learning how to use GPUs to make
very high-quality imagery, often in ways quite different from how a game or any other realtime
application would use the graphics hardware.

For these notes, we’ll concentrate on just a small subset of Gelato’s functionality: hidden

1

9.2. PRODUCTION RENDERING

surface removal. That is, the process of taking diced, displaced, shaded geometry and creating
a final antialiased, motion-blurred image. This may seem straightforward, but a good film
renderer requires many features not supported by current commodity graphics hardware: wide
smooth filters, high sampling rates, order-independent transparency, spectral opacity (that is,
separate alphas for R, G, and B), motion blur, and depth of field. We present a GPU-based
hidden-surface algorithm that implements all these features.

These notes won’t go into any detail about other aspects of Gelato’s architecture, including
handling the high-order primitives (such as NURBS or subdivision surfaces), or how the actual
shading occurs (including texturing, displacement, and global illumination), or memory man-
agement, or about scene or image input and output. There’s just too much material. It’s more
instructive to cover just one major subsystem, but go into a good deal of depth about how we
use the GPU. This is not meant to imply that other subsystems don’t, or couldn’t, or shouldn’t,
use the GPU. In many cases, they do, could, or should. In many other cases, they do not.

9.2 Production Rendering

Gelato is a “no compromises, production-quality” renderer. We wanted our renderer to have the
properties that make it ideally suited, and indeed actually used, for rendering final frames for
motion picture production. Visual effects and feature-length animation have historically been
the most demanding users of such products, so success in that domain is very important to us.

Just what is a “no compromises” renderer? What does it take to render for film? What does
“production quality” really mean? How does this differ from a game engine, realtime graphics,
or other types of rendering?

9.2.1 How Film Rendering is Different

It’s important to note critical differences (and similarities) between film and games (and other
realtime graphics applications).

Both games and films are displayed as a series offrames, or individual images. Motion
picture film displays 24 frames per second, broadcast is typically 25 fps (PAL) or 29.97 (NTSC).
Games may have variable frame rates, but typically aim for 30-60 fps. For both film and games
(these days), a final frame that a user/viewer sees is probably a composite of many passes,
layers, or subimages. Very rarely is a final frame the result of a single rendered image pass.

Both games and films are organized into groups of temporally contiguous frames, rendered
consecutively, with continuous (in the mathematical sense) camera positions, and with a com-
mon set of art assets used in the group of frames. For games, these sets of similar frames are
calledlevels, and may last for many minutes of game play. For films, such sets are calledshots,
and typically last for only a few seconds of screen time.

Games, therefore, amortize overhead such as loading textures over tens of thousands of
frames, and usually perform such tasks before the first frame is drawn (thus, in most people’s
minds, “not counting” in the computation of per-frame rendering speed). In contrast, most film
rendering is done a single frame at a time. But even if entire shots were rendered all at once
to maximize coherence (and there are reasons to believe this would be prohibitively difficult),

Gritz — GPU Production Rendering

9.2. PRODUCTION RENDERING

overhead could only be amortized over a few tens or possibly hundreds of frames comprising a
shot.

On the basis of texture requirements alone, we can see why film rendering is unlikely to
ever happen in real time. Film frames require many gigabytes of texture (versus perhaps tens
of MBs for games). Just the time to read the required texture for a frame from disk or network
could take up to several minutes. Similar costs apply to reading, culling, sorting, and dicing the
several GB of scene geometry.

No matter how fast the graphics, no matter how much is performed with the GPU instead of
the CPU, the data manipulation just toprepareto render a film frame will still preclude realtime
rendering. This shouldn’t be surprising – games wouldn’t be realtime, either, if we had to load
new game levels every 2-10 seconds of play (let alone every frame). The lower limit of film
final frame rendering speed is dictated by disk transfer and other factors, not, ultimately, by
transformation, fill, or even shading speed.

In addition to the apparent impossibility of rendering film frames in realtime, we need to
contend withBlinn’s Law. The modern rephrasing of his observation is that at any studio,
frame rendering times are constant despite hardware or algorithmic improvements. Frames take
30 minutes, or an hour, or 6 hours (depending on the studio) — exactly as long, or possibly
longer than they took at the same studio 5, 10, or 15 years ago. Studios always respond to
increased rendering resources by constructing more complex scenes with more geometry, more
lights, more complex shaders, more expensive realistic lighting, but almost NEVER by simply
taking advantage of the speedup. This is the obvious choice for them, since the final images are
precomputed and delivered on film. Thus, more time spent creating better images only improves
the audience’s experience (whereas spending more time rendering detracts from a game player’s
experience). Therefore, it would behoove us to design primarily to gracefully handle massive
scene complexity at the highest quality level, rather than architecting for realtime performance.

The exception to these trends is that there is one special case where production needs inter-
active speeds for many successive similar renderings. That case is interactive lighting, where
the geometry, camera, and shaders are fixed, and only the parameters to light sources change
from frame to frame, and we would like to see the results of such changes interactively (possi-
bly acceptable at a somewhat reduced quality level). Indeed, the ability to do such interactive
rerendering should be considered an essential design goal of a film renderer.

Another difference between games and film is related to their development and product cy-
cles. A game will be played by millions of people, and for every invocation tens or hundreds of
thousands of frames may be rendered. Image quality, code reusability and clarity, and artist/TD
time will always be happily traded for guaranteed frame rates. Images for film, on the other
hand, are only rendered once at full resolution. The amount of machine time spent rendering an
object is often dwarfed by the amount of TD time it takes to create the model, write the shader,
or light the shot, and the human time is the more expensive resource anyway. This observation
has many implications for API development, and explains why API’s and languages appropriate
for realtime (OpenGL, Cg, etc.) may not be appropriate for offline rendering, and vice versa.

Gritz — GPU Production Rendering

9.2. PRODUCTION RENDERING

9.2.2 Essential Properties of Film Production Rendering

Let’s take an inventory of essential features and charasteristics of a renderer that is intended
to create high-end imagery for film. It probably will not escape your notice that nearly every
one of these categories contains a requirement that is at best inconvenient — and frequently
impossible — on graphics hardware (at least in its “native” mode).

Geometric Primitives

Games, realtime graphics, graphics hardware, and even “low-end professional” packages rely
on polygons, but the heavy lifting for film work is almost always based on bicubic patches,
NURBS (often trimmed), and, increasingly, subdivision surfaces. Points (for particles) and
curves (for hair) are also important, and must be rendered efficiently by the million. Further-
more, all curved primitives must dice adaptively based on screen area and curvature, so as to
NEVER show tessellation artifacts.

Geometric Complexity

Geometric input can easily be several gigabytes. As a primary design goal, a film renderer
must be able to handle more geometry than could fit into RAM at once. Strategies for doing
this often include bucketing, sorting, aggressive culling, occlusion testing, procedural geometry,
and caching to disk.

Texture complexity and quality

It’s not unusual for a film frame to require hundreds to thousands of textures totalling tens of
Gigabytes of storage. Successful film renderers use a caching scheme where individual coherent
tiles are paged from disk as needed. Not only is it impractical to read the textures into memory
before rendering, but in many cases even the filenames of the textures are not known until in
the middle of the shader requesting it.1 All texture map lookups must have the highest fidelity.
Texture, environment, and shadow maps must blur (as requested by the shader) without artifacts,
seams, or noise. In many cases, lookups must have a better filter than trilinear mipmap.

Motion blur

Motion blur is essential and must be of extremely high quality (no “strobing” and little noise).
Production renderers are required to have both transformation blur (changing position, orien-
tation, and scale) as well as geometric deformation blur. To be really competitive, they must
support multisegment motion blur (arbitrary number of knots, rather than merely linear blur).
Depth of field effects are also important, though not as much so as motion blur. Ideally, a
moderate amount of motion blur should add almost no expense to the rendering of a scene.

1In advanced renderers such as Gelato or RenderMan, texture file names can be, and often are, generated dynam-
ically by the shader and looked up immediately.

Gritz — GPU Production Rendering

9.2. PRODUCTION RENDERING

Antialiasing

Simply put, NO amount of visible aliasing artifacts are acceptable. This is usually achieved
by taking many point samples per pixel (64-100 samples per pixel is common for scenes with
hair or fur). and the subpixel data must be reconstructed into pixels with a high-quality, user-
specified filter having a width larger than one pixel.

Image size, depth, format, data

Film requires arbitrary image resolutions (2k - 4k for final frames, 8k or higher are not uncom-
mon for shadow maps), flexible bit depths (8, 16, half, float), useful image formats (at least
TIFF, increasingly OpenEXR, and preferably with an easy API for users to supply their own
image writing routines). It’s also critical that a renderer be able to output not just color, alpha,
and depth, but any data computed by the shaders (in film, this is called “arbitrary output vari-
ables” (AOVs), though in the realtime graphics world it is often called “multiple render targets,”
or MRTs). Frames must be saved to disk; rendering directly to the frame buffer is not important
for film.

No limits

Arbitrary limits are not tolerable. This includes number of textures, total size of textures, size
of geometric database, resolution of images or textures, number of output channels, number of
lights, number of shaders, number of parameters to shaders.

Global Illumination

The days of strictly local illumination are over. Modern film renderers simply must support ray-
traced reflections and shadows, indirect light transport, caustics, environment lighting, “ambient
occlusion,” and subsurface scattering.

Displacement

Adaptively diced, subpixel-frequency displacements are a required feature, and should ideally
be no more expensive than undisplaced geometry.

Flexible Programmable Shading

It used to be enough to simply say that production-quality rendering needed programmable
shading (which was impossible in hardware and rarely done in software). Now that it’s more
common – even in hardware – it is helpful to enumerate some of the specific features that
distinguish programmable shading for film work from that suitable (or at least accepted) for
realtime games:

• Rich data types, such as vector, color, point, normal, matrix, strings, and arbitrary-length
arrays of any these.

Gritz — GPU Production Rendering

9.2. PRODUCTION RENDERING

• String manipulation, and the ability to refer to textures, coordinate systems, and external
data by name, rather than by handles or explicit passing of matrices as parameters. It’s
also really handy to be able to printf/fprintf from a shader.

• Hiding of hardware details and limits. Shader writers should not need to know about
reduced precision data types, memory or instruction limits, names or details of hardware
registers, etc. There should never be artifacts or loss of precision related to any such
limits that actually exist in the hardware.

• The ability to call out to user-supplied code on the host (often known as “DSO shadeops”).

• Data-dependent looping, especially for applications such as ray marching for volumetric
effects, or numerical integration inside shaders.

• Separate compilation of different types of shaders (especially light shaders).

• High-quality calculation of derivatives and antialiasing. This means that derivatives must
use central differencing and extrapolation at grid edges. Simple forward differencing
(especially if it misses edges, as ddx/ddy on NV3x do) leads to unacceptable artifacts and
poor estimates of filter sizes for texture lookups.

• Arbitrary name, data type, and number of parameter arguments into shaders and as out-
puts of shaders.

Appropriate API’s and formats

A “film renderer” needs to fit into a film production pipeline. That means, at a minimum:

• A clean procedural (C or C++) API. OpenGL and DirectX both expose too many hard-
ware details, are oriented to polygons with no real support for higher-order surfaces, have
poor or awkward support for shader assignment and binding, and are cluttered with huge
sections of the API dedicated to interactive functionality that we don’t want or need.

• A scene archive format for “baking geometry.” For RenderMan, this was RIB; there is no
equivalent metafile for OpenGL or DirectX. Gelato unifies a scene archive format with
the means of writing procedural primitives, by using the Python scripting language. It is
also possible to write Gelato plugins that directly read any scene format, without needing
to translate into an arbitrary intermediate format.

• Procedural geometry – archive files read, geometry-producing programs run, or API-
calling DSO’s executed lazily as demanded by the renderer – as a first-class concept.

• A shading language. Cg or GLSL are not the right ones, largely for the reasons stated
above. Gelato has its own shading language (GSL) to satisfy that need.

• Minor API’s: DSO shadeops, image file format readers and writers, querying shader
parameters, etc.

Gritz — GPU Production Rendering

9.2. PRODUCTION RENDERING

• Appropriate Platform: Most of the big studios use Linux. Many smaller houses use
Windows. We are also carefully watching Mac and OS X and will consider it for future
support if the film industry demands it, but so far the demand in major studios is small
or nonexistant. But the bottom line is that Windows-only drivers, support, APIs, or tools
will simply not cut it in the studios.

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

9.3 Hidden Surface Removal in Gelato

9.3.1 Goals

To allow Gelato to render for film and other high-end applications, we require hidden surface
removal features that have not traditionally been available in graphics hardware: highly su-
persampled antialiasing, filtered with a high-quality kernel with support wider than one pixel;
motion blur and depth of field; order-independent transparency with spectral opacities (sepa-
rate values for red, green, and blue); and floating-point output of color, opacity, and any other
arbitrary values computed by shaders.

Figure 9.1: A motion blurred image rendered with Gelato (courtesy of Tweak Films).

In this section, we present a high-quality hidden surface removal algorithm that is acceler-
ated by modern commodity graphics hardware. Specifically:

• The algorithm incorporates supersampling, user-selected filters with arbitrarily wide sup-
port, depth of field, and multiple output channels.

• The algorithm supports transparency. It uses the depth peeling technique, enhanced to
allow multi-channel opacity and opacity thresholding. We also present optimizations
that, for typical scenes, allow transparency performance to scale linearly rather than as
O(N2).

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

• The algorithm uses grid occlusion culling to avoid additional shading.

• The algorithm produces comparable quality and superior performance to the hidden sur-
face removal algorithms used in CPU-only software renderers, for many typical scenes
(see Figure 9.1).

• We explore a variety of engineering trade-offs in implementing this algorithm on modern
GPUs, and discuss its performance on a variety of scenes.

This work does not attempt to create real-time rendering capabilities (e.g., 30 fps). Rather,
our goal is to accelerate the rendering of images at the highest quality possible, suitable for
film or broadcast, that now take minutes or hours. We have already achieved significant speed
improvements by using graphics hardware, and we expect those improvements to become even
greater over time as graphics hardware becomes more capable and its speed improvements
continue to outpace those of CPUs.

Previous attempts at high-quality rendering with graphics hardware have generally involved
costly custom hardware whose performance is often soon overtaken by improvements in general
purpose CPUs. In contrast, this work is concerned strictly with commodity graphics hardware.
We find this approach promising because the economy of scale present with modern commod-
ity hardware makes it very inexpensive, and because graphics hardware increases in capability
at a much faster rate than CPUs are improving. For several years graphics hardware has dou-
bled in speed every six to twelve months versus every eighteen months for CPUs. In addition
to traditional geometric transformation and rasterization, modern GPUs feature (1) significant
programmability via vertex and fragment shaders, rapidly converging on the capabilities of
stream processors; and (2) floating-point precision through most or all of the pipeline. These
two facilities are the key enablers of the work described in this paper.

Related Work

Prior work can be categorized according to the hardware it requires. Software-only systems
for high-quality rendering, particularly the Reyes architecture (Cook et al., 1987; Apodaca and
Gritz, 1999) and its commercial implementations, form both the jumping-off point for our ap-
proach and the baseline against which we measure our results. Systems using specialized hard-
ware for high-quality rendering have been proposed or built, but are outside the scope of this
paper. This leaves GPU and GPU-assisted methods.

Current GPUs supportmultisampling, which computes visibility for multiple samples per
pixel but reuses a single color from the center of the pixel (Möller and Haines, 2002). This
improves real-time graphics but is not high-quality: current hardware limits the filter shape to a
box with no overlap between adjacent pixels, full floating-point formats are not yet supported,
and only low, fixed numbers of samples per pixel are supported (currently 4 to 8, versus the
dozens typically used for film rendering). The proposed Talisman architecture (Torborg and
Kajiya, 1996) mitigates the memory expense of multiple samples by rendering one screen region
at a time, and also supports multisampling, though at a fixed4× 4 samples per pixel.

The accumulation buffer(Haeberli and Akeley, 1990) supports antialiasing, motion blur,
and depth of field effects by accumulating weighted sums of several passes, where each pass

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

is a complete re-rendering of the scene at a different subpixel offset, time, and lens position,
respectively. Direct hardware support has not yet included full 32-bit floating point precision,
but programmable GPUs can use fragment shaders to apply this technique at floating point
precision, although still at the expense of sending geometry to the GPU once per spatial fil-
ter sample. In contrast, supersampling avoids this expense, and has another advantage on the
GPU (discussed in Section 9.3.3): each micropolygon covers more pixels. Interleaved sam-
pling (Keller and Heidrich, 2001) can reduce the artifacts from regularly-sampled accumulation
buffers.

Scenes with partially transparent surfaces, possibly mixed with opaque surfaces, are chal-
lenging. Methods that require sorting surfaces in depth are problematic because intersecting
surfaces may have to be split to resolve depth ordering. Thedepth peelingmethod, described in
general by (Mammen, 1989) and for GPUs by Everitt (Everitt, 2001), solvesorder-independent
transparencyon the GPU. The method is summarized later in this paper. Its principal drawback
is that a scene with maximum depth complexityD must be sent to the GPUD times. For some
scenes, such as particle systems for smoke, this can result inO(N2) rendering time, whereN
is the number of primitives. Mammen suggests anocclusion cullingoptimization (though not
by that name). In his algorithm, once an object no longer affects the current pass, it is dropped
for subsequent passes. Kelley et al. (Kelley et al., 1994) designed hardware with fourz-buffers,
able to depth peel four layers at once. They use screen regions so that only regions with high
D require high numbers of passes. The hardwareR-Buffer(Wittenbrink, 2001) proposes to re-
circulate transparent pixels rather than transparent surfaces; this avoids sending and rasterizing
the geometry multiple times, but can require vast memory for deep scenes.

9.3.2 Architectural Overview

Gelato has a Reyes-like architecture (Cook et al., 1987; Apodaca and Gritz, 1999). High-order
surface primitives such as NURBS, subdivision surfaces, and polygons are recursively split until
small enough to shade all at once. These patches are diced intogridsof pixel-sized quadrilateral
micropolygons. Grids typically contain on the order of 100 micropolygons, and are limited to a
user-selected size. The grids are possibly displaced, then assigned color, opacity, and optionally
other data values at each grid vertex by execution of user-programmable shaders. Finally, the
shaded grids are “hidden” to form a 2D image.

It is this final stage—hidden-surface removal of the shaded grids of approximately pixel-
sized quadrilaterals—that is the concern of this paper. Whether performed on the GPU or
CPU, the earlier stages of handling high-order geometry and the shading to assign colors and
opacities to the quadrilateral vertices are largely orthogonal to the methods used for hidden
surface removal. Although beyond the scope of this paper, our shading system implements
advanced techniques including global illumination and ray tracing.

Like many Reyes-style renderers, we divide image space into rectangular subimages called
buckets(Cook et al., 1987) in order to reduce the working set (of both geometry and pixels)
so that scenes of massive complexity can be handled using reasonable amounts of memory.
For each bucket, the grids overlapping that bucket are rasterized using OpenGL, as described in
Section 9.3.3. To handle partially-transparent grids, we use depth peeling but extend it in several
important ways to allow multi-channel opacity and opacity thresholding. We also introduce a

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

batching scheme that reduces the computational complexity of depth peeling for typical cases.
The transparency algorithms are discussed in detail in Section 9.3.4.

Motion blur and depth of field are achieved using an accumulation-buffer-like technique
involving multiple rendering passes through the geometry for the bucket. This is described in
Section 9.3.5.

In order to achieve sufficiently high supersampling to ameliorate visible aliasing, buckets
are rendered for all of these passes at substantially oversampled resolution, then filtered and
downsampled to form the final image tiles. The filtering and downsampling is performed en-
tirely on the graphics card using fragment programs, as described in detail in Section 9.3.6.

The handling of transparency, motion blur and depth of field, and arbitrary output chan-
nels can lead to large numbers of rendering passes for each bucket (though of course much of
that work must be performed only for buckets that contain transparent or moving geometry).
Specifically,

passes = Poutput × Pmotion × Ptransparent

wherePoutput is the number of output images;Pmotion is the number of motion blur or depth
of field samples; andPtransparent is the number of passes necessary to resolve transparency.

GPUs are well optimized to rasterize huge amounts of geometry very rapidly. Large num-
bers of passes render quite quickly, generally much faster than using CPU-only algorithms. In
short, brute force usually wins. We will return to discussion of performance characteristics and
other results in Section 9.3.7.

9.3.3 Hiding Opaque Surfaces

This section describes our basic hidden-surface algorithm for opaque geometry. For simplic-
ity, we describe the process for a single bucket in isolation; extension to multiple buckets is
straightforward. The steps are repeated for each output image2.

The algorithm has the overall splitting-and-dicing form of a Reyes-style algorithm, but with
a new grid occlusion test towards the end:

for each output image:
for every object from front to back:

if object’s bounding box passes the occlusion test:
if object is too big to dice:

split object and re-insert split sub-objects
else:

dice object into grid of pixel-sized quads
if diced grid passes the occlusion test:

shade the grid
render the grid

2Users’ shaders can optionally output other variables besides color. Each is rendered into a separateoutput
image. Examples include surface normals or separate specular and diffuse images.

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Grid Rendering

To render diced grids with high quality on the GPU, we useregular supersampling— in other
words, we render large, and minify later. We render the grids using standard OpenGL primitives
into an image buffer which is larger than the final pixel resolution by a user-selected factor,
typically 4-16x in each dimension. For a typical bucket size of32×32 pixels, the supersampled
buffer fits easily in GPU memory. It is a happy synergy that buckets, primarily designed to
limit in-core scene complexity, also help to limit buffer size. Rendering grids large also helps
tune the geometry for the GPU. The projected screen size of a grid micropolygon is usually on
the order of a single pixel in the final image. However, current GPUs are designed to be most
efficient at rendering polygons that cover tens or hundreds of pixels; smaller polygons tend to
reduce the parallel computation efficiency of the hardware. Supersampling helps to move our
grid polygons into this “sweet spot” of GPU performance.

Shading data can be computed at the resolution of the grid—thedicing rate—or at another,
higher resolution. If the shading and dicing rates match, then the shaded colors are passed down
to the GPU as per-vertex data. A full-precision register interpolates the colors across polygons,
resulting in smooth-shaded grid.

If the shading rate differs from the dicing rate, so that shading data is no longer per-vertex,
then colors are passed to the GPU as a floating-point texture instead. Sending the texture to the
GPU and then sampling it for each fragment is slower than passing a color per vertex. In our
implementation, the penalty was 10–20%, and quality suffered because the hardware we used
could not efficiently filter floating-point texture lookups.

Occlusion Culling

In modern Reyes-style algorithms, before an object is split, diced, or shaded, its bounding box
is tested to see whether it is completely occluded by objects already rendered, and if so, it
is culled. To maximize culling (that is, to reduce shading of objects that will turn out to be
occluded), objects are processed in roughly front-to-back order, using a heap data structure
ordered by the nearz values of the objects’ camera space bounding boxes. In a high-quality
renderer, shading tends to be more expensive than occlusion testing, since it may include texture
lookups, shadows, or even global illumination. So occlusion culling before shading can often
produce great performance benefits, typically an order of magnitude or more.

CPU-based renderers typically maintain a hierarchicalz-buffer for occlusion testing (Greene
and Kass, 1993). By contrast, our renderer uses the GPU hardware to occlusion test against the
full z-buffer, via the OpenGLocclusion-queryoperations (Segal and Akeley, 2003). Occlusion-
query returns the number of fragments that passed thez-buffer test between the query start and
end calls. In other words, it returns the number of visible fragments. We turn off writes to
the framebuffer, begin an occlusion-query, render the bounding box, then end the query. If the
query reports zero visible fragments, the object is culled.

The bounding box occlusion cull before objects are diced is similar to CPU-based algo-
rithms. But later, after the object is diced (but before it is shaded), we occlusion cull again
using the actual grid geometry, an exact test for whether rendering the grid would change any
pixels. This test would be quite expensive on the CPU, but GPUs rasterize quickly. Grid culling

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

is especially effective near silhouette edges, where grids behind the silhouette very often have
a bounding box that spills out past the silhouette. Grid culling can also help when an object’s
bounding box pokes out from behind other geometry, but the actual object does not (e.g., two
concentric spheres with slightly different radii). Grid culling reduces shading by 10-20% in
our test scenes and provides a significant performance boost. In scenes dominated by shading
time such as ambient occlusion, ray tracing, and complex user-defined shaders, the performance
boost is even more pronounced.

The PC bus architectures in current use allow much greater data bandwidth to the GPU
than back from it. Occlusion-query fits this mold well, since it returns only a single integer.
However, the GPU must finish rendering the primitives before the occlusion-query result is
available. Thus the frequent queries in our hider algorithm tend to cause the GPU to run at
reduced efficiency, although some latency can be hidden by careful ordering of operations.

9.3.4 Transparency

As mentioned earlier, we use depth peeling to render grids that may be transparent and may
overlap in depth and screen space. Standard depth peeling is a multipass method that renders the
nearest transparent surface at each pixel in the first pass, the second nearest surface in the second
pass, etc. Each pass is composited into an RGBAZ “layers so far” buffer that accumulates
the transparent layers already rendered. Each pass renders the whole scene using ordinaryz-
buffering, with an additional test that only accepts fragments that are behind the corresponding
z in the layers-so-far buffer. An occlusion query test on each pass indicates whether that layer
was empty; if it was, the algorithm halts.

We considered an alternative to depth peeling, an algorithm to “bust and sort” overlapping
grids into individual micropolygons, then render them all in front-to-back order. This approach
was abandoned because current GPUs do not support floating-point alpha blending or allow
framebuffer reads from within fragment programs. This might be worth revisiting if future
GPUs add these capabilities.

Our depth peeling (Listing 1) extends that of (Everitt, 2001) in several ways. First, like
(Mammen, 1989), we process all opaque surfaces beforehand into a separate RGBAZ buffer,
leaving only the transparent grids for depth peeling. Second, we perform opacity thresholding
between batches of transparent surfaces sorted in depth, resulting in greatly improved perfor-
mance for typical cases. Third, we handle spectral opacity, using three passes when needed.

Opaque Preprocessing

Because most scenes are mostly opaque, rendering opaque surfaces first drastically cuts the
number of required depth peeling passes. The remaining transparent grids are occlusion culled
against the opaquez-buffer, further reducing depth peeling effort. We use the opaquez-buffer
texture as an additional depth comparison during depth peeling, so transparent micropolygons
occluded by opaque surfaces do not add additional depth peeling passes.

Figure 9.2 illustrates the algorithm. The opaque preprocess renders all opaque surfaces into
the opaquez-buffer. From here on, we render only transparent surfaces. Grids occluded by
the opaquez-buffer are culled. Pass 1 computes RGBAZ of the nearest transparent surfaces

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Figure 9.2: Depth peeling of three transparent spheres and an opaque cube, after one layer has
been peeled. Green indicates the layers-so-far buffer (nearest layer) while red indicates the layer
being computed (second-nearest layer). The blue line on the surface of the cube indicates the
opaque-surfaces buffer, which culls away all surfaces behind it.

(green); this initializes the layers-so-far buffer. Passp, p > 1, computes RGBAZ of thep-th
nearest transparent surfaces. The fragment program for Passp rejects fragments unless they are
both behind the layer-so-far buffer’sz and in front of the opaque buffer’sz; the z-buffer test
for Passp selects the nearest of the accepted fragments. We halt when the occlusion query test
for Passp reports that no fragments were accepted. Otherwise, we merge the RGBA of Passp
under the layers-so-far buffer, and replace thez of the layers-so-far buffer with thez of Passp.

Z-Batches

Depth peeling hasO(N2) worst-case performance forN grids. If we could depth peel the grids
in batches ofB grids each, the worst case would be onlyO((N/B)B2) = O(BN) = O(N).
The problem is that the grids from separate batches may overlap in depth, so we cannot simply
depth peel the batches independently and composite the results. We solve this problem by
restricting each batch to a specific range ofz values, partitioning thez axis so that standard
compositing yields correct results.

We do this with constant-z clipping planes. Recall that we have sorted our grids by thez
value of the front plane of the camera-space bounding box. We break the list of transparent
grids intoz-batchesof B consecutive grids each. Thezmin of eachz-batch is thezmin of its
first primitive. While depth peeling az-batch, we clip away fragments nearer than the batch’s
zmin or farther than (or equal to) the next batch’szmin; see Figure 9.3. Grids that cross azmin

boundary are rendered with both batches. Eachz-batch now produces the correct image for a
non-overlapping range ofz values, and simple compositing of these images now works.

Grids that cross multiplezmin planes appear in multiplez-batches. In the worst case, grids
overlap so extensively in depth thatz-batch size effectively approachesN , and we still do
O(N2) work. More typically, batches are bigger thanB but still much smaller thanN , and the
speed-up is enormous.

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Batch 0 Batch 1 Batch 2

Figure 9.3: Clipping planes inz let us depth-peel eachz-batch independently. Here we see
threez-batches, withB = 5. Assume each sphere is one grid. Note that grids that “trail” into a
following batch are rendered in both batches, withz-clipping at the batch boundary.

Opacity Thresholding

Due to the nature of the Porter-Duffover operation (Porter and Duff, 1984) used to accumu-
late transparent layers, the opacity value will approach but never equal full opacity. Opacity
thresholding (Levoy, 1990) approximates opacity values above a user-specified threshold as
fully opaque, thus reducing the effective depth complexity. This meshes nicely withz-batches.
After eachz-batch is rendered, we identify these pseudo-opaque pixels and merge theirz values
into the opaque buffer. Before grids are added to az-batch, they are occlusion culled against
this opaque buffer.

Figure 9.4: A particle system with sixteen thousand transparent overlapping spheres. Courtesy
of Tweak Films.

Usingz-batches and opacity thresholding can improve performance by orders of magnitude.
Figure 9.4 rendered in just under 4 hours without using either technique; in 13 minutes withz-
batching (B = 26) but no opacity thresholding; in 3 min. 38 sec. withB = 26 and an opacity
threshold of 0.95. The stochastic CPU algorithm (as implemented in PRMan) renders the scene
in 5 min. 15 sec. with the same opacity threshold.

Thresholding results are inexact because the threshold test is performed after anentire z-
batch is processed and not as individual fragments are processed. The first grid to push a pixel
over the threshold may be in the middle of a batch, so the pixel may still accumulate a few more

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

layers. This artifact is easy to see when we lower the opacity threshold to an unreasonably low
value such as 0.2, especially since batching can change at bucket boundaries (see Figure 9.5).
However, it is nearly invisible at ordinary opacity thresholds (e.g., 0.95).

Figure 9.5: Exaggerated artifacts of opacity thresholding by batches. A stack of camera-facing
planes, each with opacity 0.1, with the opacity threshold is set to the unreasonably low value of
0.2. Image on right shows the ideal solution.

If future GPUs were to extend the occlusion query operation to return the pixel bounding
box and thez range of the rendered fragments that passed the occlusion test, we could optimize
the thresholding pass by only running it on the bounding rectangle from the previous depth
peeling pass. This would allow us to run the test after each primitive instead of perz-batch,
which would reduce error and improve culling efficiency. Occlusion query is the only reduction
operator currently available in GPU hardware; enhancements could be useful for many general
computations.

Spectral Opacity

During geometry processing, we detect whether any primitive contains spectral opacity, as op-
posed to monochromatic opacity. Hardware supportingmultiple draw buffers(ATI, 2003) can
render spectral opacity in a single pass. Otherwise, three passes of the whole transparency
algorithm are required, one each for red, green, and blue.

9.3.5 Motion Blur and Depth of Field

Motion blur and depth of field are computed by rendering multiple passes into a supersampled
accumulation buffer stored on the GPU, with the number of time and/or lens samples a user-
specified parameter. Each pass computes a single instant in time and lens position for all pixels.
This contrasts with the approach of using a different time and lens position for each pixel or
sample (Cook et al., 1984; Cook, 1986).

The passes can be accumulated either by rendering into a single buffer multiple times, or by
rendering into multiple buffers simultaneously (Listing 2). The former reduces memory usage
at the expense of repeated traversals of the geometry, while the latter increases memory usage
for the buffers, but minimizes geometry traversals and any per-primitive computations and state

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Listing 1 Pseudo-code for the transparency rendering loop including depth peeling,z-batch
management and opacity thresholding.

for every object from front to back:
if object’s bounding box passes the occlusion test:

if object is splittable:
split object and re-insert split sub-objects

else:
dice object into grid
if diced grid passes the occlusion test:

shade grid
if grid is transparent:

append grid to current z-batch
if current z-batch size exceeds threshold:

save opaque RGBAZ
while not finished rendering all transparent layers:

for every transparent grid in z-batch:
render transparent grid

composite transparent layer under layers so far
store accumulated transparent RGBA
restore opaque RGBAZ

else:
render opaque grid

if transparent grids were rendered:
composite accumulated transparent layers over opaque layer

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

changes. With either method, the same geometry will be rendered the same number of times by
OpenGL. Accumulation is always on the GPU, to avoid readback.

Listing 2 Pseudo-code for the accumulation algorithms.
Multibuffer accumulation:

for every primitive P:
for every time sample t from 0 to T-1:

render P(t) into buffer[t]
for every time sample t from 0 to T-1:

accumulate buffer[t] into final image

Multipass accumulation:

for every time sample t from 0 to T-1:
for every primitive P:

render P(t) into buffer
accumulate buffer into final image

If the time-sample buffers exceed the available video memory, performance drops radically,
as buffers are swapped back and forth to CPU memory. Therefore we prefer to use multiple
passes.

Rather than transfering grid data to the video memory for each pass, we cache them in
vertex buffer objects(VBOs) (SGI, 2003). This can double motion blur performance. We have
not seen swapping issues with VBOs, perhaps because we use them only for grids above a
certain size, and one bucket will generally have a finite number of these visible.

Occlusion-culled grids provide another opportunity for performance improvement over CPU
culling. Motion-blurred bounding boxes are particularly inefficient for occlusion culling, whereas
grid culling at each time sample is easily implemented during standard motion blur rendering.

Vertex Motion

Each pass renders the geometry for a specific time in the shutter interval, and in the case of
depth of field, a specific position on the lens. We use a GPU vertex program that performs the
motion blur interpolation, the model-to-view transformation, and the lens position offset (based
on depth; see formula in (Potmesil and Chakravarty, 1981)).

Sampling shutter times and lens positions simultaneously for the whole bucket, as opposed
to having the time and lens correspondence differ for every pixel, leads to correlated artifacts at
low sampling rates. However, with a sufficiently high number of passes (relatively inexpensive
with graphics hardware), artifacts become negligible.

We automatically clamp the number of passes for a bucket based on maximum vertex mo-
tion, for motion blur, and maximum area of the circle of confusion, for depth of field. This is a
big speed-up for buckets with little or no blur.

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Per-Pixel Time Sampling

GPUs can also simulate the traditional stochastic sampling technique of associating a specific
time value with each subpixel sample (Cook et al., 1984; Cook, 1986). For each triangle, we
rasterize a quadrilateral covering the screen space bounds of the triangle’s entire motion, ap-
plying a fragment program that interpolates the triangle’s vertex coordinates to the time values
associated with that pixel and tests the sample point to see if it intersects the interpolated trian-
gle. Points that fail the intersection testKILL the fragment, otherwise the depth value of each
intersected fragment is computed and output along with the fragment color. This results in an
image as shown in Figure 9.6.

Figure 9.6: Using a fragment program to sample a moving geometry at a different time value
per pixel. For clarity, we have used just one time sample per pixel.

Though straightforward, this approach is inefficient for a variety of reasons. The GPU
contains dedicated hardware for rasterization, clipping, and culling that is not used by this
technique. The moving triangle’s bounding box must be computed, either on the CPU or in the
GPU vertex program. The resulting rectangular bounds contain many points outside the triangle
which must be run through the complex fragment program. The lengthy fragment program that
interpolates and tests intersections becomes a bottleneck for GPU throughput. Current GPUs
do not efficiently implementearly fragment kill, which would prevent the computation of the
interpolated depth for pixels that fail the hit test. Finally, the fragment program must compute
and outputz; this is calleddepth replacementand diminishes GPU performance. We have found
the multipass techniques we describe to have significantly better performance.

9.3.6 Filtering and Downsampling

Once a bucket has been completely rendered at the supersampled resolution(wq, hq), it is down-
sampled to the final pixel resolution(wp, hp) by a two-pass separable filtering algorithm that

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

runs on the GPU and that supports user-selected high quality filters with large support regions.
The downsampled image is then read back to the CPU for output. Care is taken to avoid any
readback of the higher resolution images, since readback is slow.

The first pass convolves thex filter kernel with the rows of the supersampled image, result-
ing in an intermediate image of size(wp, hq). The second pass convolves they filter kernel with
the columns of the intermediate image.

The fragment program for each pass is generated on the fly by unrolling the user-specified
filter into straight-line code that includes all filter weights and pixel offsets as numerical con-
stants. This avoids per-pixel evaluation, or even per-pixel texture lookup, of the filter kernel,
and it avoids loop overhead. Details are available in (Wexler and Enderton, 2005).

9.3.7 Results

We have implemented these algorithms in the context of a production-quality renderer. It has
been tested on a wide range of scenes, both real-world and contrived, by ourselves and by others.
Compared to software-based stochastic sampling renderers, we have found that our algorithm
has comparable image quality and superior performance.

Image Quality

Figure 9.7 shows a portion of a radial test pattern rendered with our algorithm (top) versus
stochastic sampling (bottom) for a variety of sampling rates (from left to right, 1, 4, 16, and
32 samples per pixel). At low sampling densities, the regular sampling of the hardware rasteri-
zation shows egregious aliasing, but the superiority of stochastic sampling becomes negligible
surprisingly quickly. In real-world examples, noticeable artifacts are even less visible than in
pathological examples such as this test pattern.

Figure 9.8 compares the motion blur of our algorithm’s regular sampling (top) with that
of stochastic sampling (bottom), for a variety of temporal sampling rates. Below a certain
threshold (dependent on the amount of motion in the scene), regular sampling suffers from sig-
nificant strobing artifacts, while stochastic sampling degrades more gracefully. However, above
that threshold, regular sampling gives a smooth appearance, without the grain of stochastic
sampling. Regular sampling (both spatial and temporal) will always have visible artifacts or
strobing when the sampling rates are not adequate for the scene geometry or motion. Somewhat
more care may be necessary for users to choose adequate sampling rates, compared to stochas-
tic sampling. But modern hardware can rasterize at high resolution and with many passes very
rapidly, making the necessary sampling rates quite practical, even in a production setting.

Performance

All of the trials discussed below were timed on a 2.1 GHz Athlon 3000 running Linux, with an
NVIDIA Quadro FX 3000 (NV35). We report the sum of user and system time, since time spent
in the graphics driver can sometimes register as system time. Rendering times are compared
against a highly optimized commercial renderer that uses CPU-based stochastic point sampling
(PhotoRealistic RenderMan 12.0). The test scene used is either 1 or 8 copies (not instances) of

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Figure 9.7: Antialiasing quality with 1, 4, 16, and 32 samples per pixel. Top: regular sampling;
bottom: stochastic sampling.

Figure 9.8: Motion blur quality with (from left to right) 1, 4, 16, and 32 temporal samples. Top:
regular sampling; bottom: stochastic sampling. Model courtesy of Headus, Inc.

a NURBS character (courtesy of Headus) of about 17,000 control points, rendered with mapped
displacement (not just bump mapping), procedural color, simple plastic shading, and four light
sources, one of which is shadow-mapped.

To isolate the time for hidden surface removal, we would like to subtract the cost of the
other rendering phases such as geometry management (reading, splitting, dicing) and shading
(which includes reading texture and shadow maps from disk). We expect those costs to be
fixed with respect to spatial and temporal sampling rates. However, we cannot separate these

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 40 60 80 100 120 140

se
co

nd
s

samples/pixel

Stochastic CPU
Multipass GPU

Figure 9.9: Performance comparison of our GPU-assisted multipass algorithm versus a CPU-
only stochastic point sampling renderer (PRMan), rendering the displayed frame at1800×1080
pixels with 1, 2, 4, 8, 16, 32, 64, and 144 samples per pixel. Total render time minus shading
delta.

phases precisely, since hiding informs shading. A low estimate of these fixed costs is the time
difference between a full render and one with trivial surface shaders, which we call the shading
delta.

Figure 9.9 shows rendering time versus spatial sampling for both renderers. Here we have

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

subtracted a measured shading delta of 32s seconds for our GPU-accelerated renderer and 44s
seconds for the CPU renderer. For both renderers, hiding time appears linear in the number of
samples, but the marginal cost per sample is 10 times lower for the GPU. At high sample rates,
the GPU hider is much faster.

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70

se
co

nd
s

Time samples

Stochastic CPU
Multipass GPU

Figure 9.10: Motion blur performance, rendering the full creature shown cropped in Figure 9.8
at 1024 × 786 pixels. The CPU renderer uses the same samples for time and space; the GPU
renderer was run with 16 pixels per sample.

Figure 9.10 shows rendering time versus temporal sampling rate. The stochastic CPU ren-
derer renders 16 time samples in about the same time as 1, for a noisy but usable image. At
such low sample rates, the GPU renderer is very fast, but is likely to strobe. For an image that
requires 32 regular time samples but only 16 stochastic samples, the GPU renderer is still 3
times faster. Each added sample costs about 0.35 seconds on the GPU or 0.94 seconds on the
CPU. The stochastic hider has the constraint that adding time samples requires adding spatial
samples, because it uses the same samples for both. This is a disadvantage, particularly since,
visually, blurrier scenes normally require fewer spatial samples, not more.

Figure 9.11 shows ageometry-heavyscene, an army of 800 NURBS characters. Rendering
it with trivial shaders is over 5 times faster with our GPU renderer than with the CPU renderer.3

While it is hard to estimate how much of that time is hidden-surface removal versus geometry
management, it demonstrates that even though large amounts of grid data are being transferred
to the GPU, our algorithm still behaves very well.

A scene using global illumination or other slow shading methods will beshading heavy.
Here the hider’s speed is less important than how agressively it culls occluded points before
they are shaded. This is more difficult to compare between renderers with differing shading

3Stochastic CPU: 721 sec full shaders, 554 trivial shaders. Multipass GPU: 163 sec full shaders, 96 sec trivial
shaders.

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Figure 9.11: Army of 800 displaced NURBS creatures,1800 × 1100 pixels, 36 samples per
pixel.

and geometry systems. But as mentioned earlier, the GPUs ability to do relatively fast grid
occlusion allows us to cull an extra 10-20% of points, versus a typical Reyes CPU algorithm.

Our GPU renderer slows drastically for scenes withsmall grids, such as a million pixel-
sized triangles that each form a one-micropolygon grid. Small batch sizes are the bane of GPU
performance. A future project is to reduce this problem by combining nearby grids. We would
not expect a CPU hider to have this issue.

The slowest cases for the GPU-based hider are those that require many passes. Modest
motion blur performs well, as we’ve seen. But a bucket containing a grid that moves 100 pixels
will require about 100 motion blur passes to avoid strobing. Soextreme motiongets expensive.
Extreme motion increases noise in stochastic hiders, but that is usually visually acceptable.
Similar issues apply to depth of field. Scenes withlayered transparencyalso require the GPU to
rasterize grids multiple times, for depth peeling, whereas the CPU can maintain arbitrary lists of
fragments per pixel. Combining motion blur with transparency multiplies the required number
of passes, and eventually the CPU wins. Figure 9.12 shows a sphere with 550 transparency-
mapped “feathers”. Even without motion blur, this example runs 50% slower in our renderer
than in the CPU renderer. But in motion with 64 time samples, the stochastic renderer is nearly
9 times faster (stochastic CPU: 7.5 sec static, 59 sec moving; Multipass GPU: 12.0 sec static,
525 sec moving).

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Figure 9.12: A case where our algorithm performs poorly: many stacked motion-blurred trans-
parent objects. The “feathers” are rectangular strips that use a texture to modulate transparency.

9.3.8 Conclusions

We have described an algorithm for hidden-surface removal that leverages commodity graphics
hardware to achieve superior quality and features compared to traditional hardware render-
ing, while outperforming traditional CPU-software-based high-quality rasterization for typical
scenes.

This paper makes the following contributions:

• An algorithm that systematically incorporates high-end features into a hardware-oriented
rendering framework. These include supersampling at very high rates, user-selected fil-
ters with arbitrarily wide support, motion blur and depth of field, order-independent trans-
parency, multi-channel opacity, and multiple output channels.

• Two optimizations of the depth peeling technique, opacity thresholding and z-batches,
that allow it to perform in practice asO(N) rather thanO(N2).

• An exploration of the performance of the algorithm in various cases, and of a variety of
engineering trade-offs in using GPUs for high-quality hidden surface removal.

It is often assumed that regular spatial sampling will give inferior results to stochastic sam-
pling. When rates of 4 or 16 samples per pixel were considered high, that may have been true.
But our experience has been that at the dozens to hundreds of samples per pixel that are easily
affordable when leveraging graphics hardware, the deficiencies of regular sampling are visible
only with contrived pathological examples, and not in “real” scenes. If desired, artifacts from
regular sampling could be further reduced by using interleaved sampling (Keller and Heidrich,
2001) or multisampling (when supported by graphics hardware).

Using advanced GPU features such as floating point precision and detailed occlusion queries
can cause current GPU drivers and hardware to run at reduced speed, perhaps 4-16x slower
than the optimized paths. Furthermore, despite our algorithm’s minimal use of readback, we
find the GPU is idle much of the time. With future work to hide more GPU latency, new

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

GPU designs with fewer penalties for high-precision computation, and the integration of GPU-
assisted shading, we hope to recapture this lost performance.

In conclusion, high-quality rendering systems can now be built on a substrate of commodity
graphics hardware, for offline rendering as well as for real-time or interactive applications. The
considerable power of the GPU can be leveraged without compromising either image quality
or advanced features. We expect that similar hybrid hardware/software solutions will become
more common as GPUs continue to improve in speed and capability.

Gritz — GPU Production Rendering

9.3. HIDDEN SURFACE REMOVAL IN GELATO

Acknowledgements

Some of these notes are adapted from a whitepaper I wrote a couple years ago, and contains el-
ements of talks I’ve been giving over the past few years concerning film versus game rendering.
Other parts of these notes are adapted from a paper I co-wrote with Dan Wexler, Eric Enderton,
and Jonathan Rice (as I write these notes, it is as-yet unpublished, though it may have found a
home by SIGGRAPH). Even the many parts of these notes that are new may be my words, but
they are the result of many people’s work and ideas, especially those named above and below.

Gelato is the result of collaboration with many talented individuals, including Dan Wexler,
Jonathan Rice, Eric Enderton, John Schlag, Radomir Mech, and Philip Nemec, and with sig-
nificant input from Cass Everitt and Simon Green, among others. It would be a mere research
project, rather than a product that people actually use, if it were not for the talented business
team in the Digital Film Group, including Laura Dohrmann, Cynthia Dueltgen, Dave Wilton,
and Matt Jefferson, as well as countless other individuals and groups at NVIDIA. And, espe-
cially, for David Kirk and Beth Loughney, who provided a stable home and management for
the project. (Names in the above lists, in case you are wondering, are in the order they joined
the company, and are not meant to imply small relative contribution by people at the ends of the
lists.) This is by no means a complete accounting of all people who have contributed in various
ways to this work.

Any product names mentioned are trademarked by their respective owners.

Resources

If you’re interested in Gelato, it can be downloaded fromhttp://film.nvidia.com .
I strongly recommend bothGPU Gemsbooks. Of particular interest is Chapter 21 ofGPU

Gems II, in which Dan Wexler and Eric Enderton describe GPU-based supersampling and fil-
tering in gory detail, including complete working code.

Gritz — GPU Production Rendering

Bibliography

Apodaca, A. A. and Gritz, L. (1999).Advanced RenderMan: Creating CGI for Motion Pictures.
Morgan-Kaufmann.

ATI (2003). ATI OpenGL Extension Specifications (http://www.ati.com/developer/).

Cook, R. L. (1986). Stochastic sampling in computer graphics.ACM Transactions on Graphics,
5(1):51–72.

Cook, R. L., Carpenter, L., and Catmull, E. (1987). The Reyes image rendering architecture. In
Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 95–102.

Cook, R. L., Porter, T., and Carpenter, L. (1984). Distributed ray tracing. InComputer Graphics
(SIGGRAPH ’84 Proceedings), volume 18, pages 137–45.

Everitt, C. (2001). Interactive order-independent transparency. Technical report, NVIDIA Corp.
(http://developer.nvidia.com/).

Greene, N. and Kass, M. (1993). Hierarchical Z-buffer visibility. InComputer Graphics Pro-
ceedings, Annual Conference Series, 1993, pages 231–240.

Haeberli, P. E. and Akeley, K. (1990). The accumulation buffer: Hardware support for high-
quality rendering. InComputer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages
309–318.

Keller, A. and Heidrich, W. (2001). Interleaved sampling. InRendering Techniques 2001: 12th
Eurographics Workshop on Rendering, pages 269–276.

Kelley, M., Gould, K., Pease, B., Winner, S., and Yen, A. (1994). Hardware accelerated ren-
dering of csg and transparency. InProceedings of SIGGRAPH 94, Computer Graphics
Proceedings, Annual Conference Series, pages 177–184.

Levoy, M. (1990). Efficient ray tracing of volume data.ACM Transactions on Graphics,
9(3):245–261.

Mammen, A. (1989). Transparency and antialiasing algorithms implemented with the virtual
pixel maps technique.IEEE Computer Graphics & Applications, 9(4):43–55.

Möller, T. and Haines, E. (2002).Real-Time Rendereing. A K Peters, second edition.

28

BIBLIOGRAPHY

Porter, T. and Duff, T. (1984). Compositing digital images. InComputer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 253–259.

Potmesil, M. and Chakravarty, I. (1981). A lens and aperture camera model for synthetic image
generation. InComputer Graphics (SIGGRAPH ’81 Proceedings), volume 15, pages 297–
305.

Segal, M. and Akeley, K. (2003).The OpenGL Graphics System: A Specification (version 1.5)
http://www.opengl.org/.

SGI (2003). OpenGL Extension Registry http://oss.sgi.com/projects/ogl-sample/registry/.

Torborg, J. and Kajiya, J. (1996). Talisman: Commodity real-time 3d graphics for the pc.
In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference
Series, pages 353–364.

Wexler, D. and Enderton, E. (2005).GPU Gems II, chapter 21, High-Quality Antialised Ras-
terization, pages 331–344.

Wittenbrink, C. M. (2001). R-buffer: A pointerless a-buffer hardware architecture. In2001
SIGGRAPH / Eurographics Workshop on Graphics Hardware, pages 73–80.

Gritz — GPU Production Rendering

