
Performance Tools

Raul Aguaviva and Jeff Kiel (NVIDIA Corporation)

Copyright © NVIDIA Corporation 2004

Performance Tools Agenda

GPU architecture at a glance
Intel VTune: Code Profiling
NVGLExpert: OpenGL API Assistance
NVShaderPerf: Shader Performance
NVPerfKit: Driver and GPU Performance Data
NVPerfHUD: Interactive Performance Analysis

Copyright © NVIDIA Corporation 2004

GPU architecture at a glance

Pipelined architecture
Each unit needs the data from the previous unit to do its job

Bottleneck identification and elimination
Balancing the pipeline

Copyright © NVIDIA Corporation 2004

GPU Pipelined Architecture (simplified view)

Frame
buffer

Pixel
Shader

Texture
Storage +
Filtering

RasterizerVertex
Shader

Vertex
SetupCPU

Vertices Pixels

GPU

One unit can limit the speed of the pipeline

Copyright © NVIDIA Corporation 2004

Bottleneck Identification

Modify the stage itself
By decreasing its workload

FPS FPS

If performance/FPS improves greatly, then you know this is
the bottleneck
Careful not to change the workload of other stages!

Copyright © NVIDIA Corporation 2004

Bottleneck Identification

Rule out the other stages
By giving all of them little or no work

FPS

If performance doesn’t change significantly, then you know
this is the bottleneck
Careful not to change the workload of this stage!

FPS

Copyright © NVIDIA Corporation 2004

Bottleneck Identification

Sample counters at different points along the
pipeline

Use NVPerfKit and NVPerfHUD
How much work performed by each unit, compare to the
maximum work possible

Copyright © NVIDIA Corporation 2004

VTune

Welcome Gary Carleton from Intel Corporation

Copyright © NVIDIA Corporation 2004

NVGLExpert

What is it and what does it do?
Project status?

Copyright © NVIDIA Corporation 2004

What is it and what does it do?

Helps eliminate performance issues on the CPU
Instrumented OpenGL driver

Outputs information to file, console or debugger
Different groups and levels of information detail

Controlled by small GUI tool
Windows tool sets appropriate registry entries
Linux tool sets environment variables

What it can do (today)
Prints GL errors when the are raised
Indicates if the driver runs through a software fallback
Shows unexpected shader compile errors
Shows where your VBOs reside
Print reasons for GL_FRAMEBUFFER_UNSUPPORTED_EXT

Feature list will grow with future drivers

Copyright © NVIDIA Corporation 2004

Project Status

Will be delivered with next major driver release
Windows and Linux
Currently supports NV3x and NV4x architectures
What types of things are interesting?

NVGLExpert@nvidia.com

mailto:NVGLExpert@nvidia.com

Copyright © NVIDIA Corporation 2004

NVShaderPerf

What is NVShaderPerf?
What’s new with version 1.8?
What’s coming with version 2.0?

Copyright © NVIDIA Corporation 2004

v2f BumpReflectVS(a2v IN,
uniform float4x4 WorldViewProj,
uniform float4x4 World,
uniform float4x4 ViewIT)

{
v2f OUT;
// Position in screen space.
OUT.Position = mul(IN.Position, WorldViewProj);
// pass texture coordinates for fetching the normal map
OUT.TexCoord.xyz = IN.TexCoord;
OUT.TexCoord.w = 1.0;
// compute the 4x4 tranform from tangent space to object space
float3x3 TangentToObjSpace;
// first rows are the tangent and binormal scaled by the bump scale
TangentToObjSpace[0] = float3(IN.Tangent.x, IN.Binormal.x, IN.Normal.x);
TangentToObjSpace[1] = float3(IN.Tangent.y, IN.Binormal.y, IN.Normal.y);
TangentToObjSpace[2] = float3(IN.Tangent.z, IN.Binormal.z, IN.Normal.z);
OUT.TexCoord1.x = dot(World[0].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.y = dot(World[1].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.z = dot(World[2].xyz, TangentToObjSpace[0]);
OUT.TexCoord2.x = dot(World[0].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.y = dot(World[1].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.z = dot(World[2].xyz, TangentToObjSpace[1]);
OUT.TexCoord3.x = dot(World[0].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.y = dot(World[1].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.z = dot(World[2].xyz, TangentToObjSpace[2]);
float4 worldPos = mul(IN.Position, World);
// compute the eye vector (going from shaded point to eye) in cube space
float4 eyeVector = worldPos - ViewIT[3]; // view inv. transpose contains eye position in world space in last row.
OUT.TexCoord1.w = eyeVector.x;
OUT.TexCoord2.w = eyeVector.y;
OUT.TexCoord3.w = eyeVector.z;
return OUT;

}

///////////////// pixel shader //////////////////

float4 BumpReflectPS(v2f IN,
uniform sampler2D NormalMap,
uniform samplerCUBE EnvironmentMap,

uniform float BumpScale) : COLOR
{

// fetch the bump normal from the normal map
float3 normal = tex2D(NormalMap, IN.TexCoord.xy).xyz * 2.0 - 1.0;
normal = normalize(float3(normal.x * BumpScale, normal.y * BumpScale, normal.z));
// transform the bump normal into cube space
// then use the transformed normal and eye vector to compute a reflection vector
// used to fetch the cube map
// (we multiply by 2 only to increase brightness)
float3 eyevec = float3(IN.TexCoord1.w, IN.TexCoord2.w, IN.TexCoord3.w);
float3 worldNorm;
worldNorm.x = dot(IN.TexCoord1.xyz,normal);
worldNorm.y = dot(IN.TexCoord2.xyz,normal);
worldNorm.z = dot(IN.TexCoord3.xyz,normal);
float3 lookup = reflect(eyevec, worldNorm);
return texCUBE(EnvironmentMap, lookup);

}

NVShaderPerf

Inputs:
•HLSL
•GLSL (fragments)
•!!FP1.0
•!!ARBfp1.0
•PS1.x,PS2.x,PS3.x
•VS1.x,VS2.x, VS3.x
•Cg

NVShaderPerf

GPU Arch:
•GeForce 7800 GTX
•GeForce 6X00, FX series
•Quadro FX series

Outputs:Outputs:
••Resulting assembly codeResulting assembly code
••# of cycles# of cycles
••# of temporary registers# of temporary registers
••Pixel throughputPixel throughput
••Test all fp16 and all fp32Test all fp16 and all fp32

Copyright © NVIDIA Corporation 2004

NVShaderPerf: In your pipeline

Test current performance
against shader cycle budgets
test optimization opportunities

Automated regression analysis
Integrated in FX Composer 1.7

Copyright © NVIDIA Corporation 2004

FX Composer 1.7 – Shader Perf

•Disassembly

•Target GPU

•Driver version match

•Number of Cycles

•Number of Registers

•Pixel Throughput

•Forces all fp16 and all fp32
(gives performance bounds)

Copyright © NVIDIA Corporation 2004

NVShaderPerf 1.8

Support for GeForce 7800 GTX and Quadro FX 4500
Unified Compiler from ForceWare 77.72 driver
Better support for branching performance

Default computes maximum path through shader
Use –minbranch to compute minimum path

Copyright © NVIDIA Corporation 2004

///
// determine where the iris is and update normals, and lighting parameters to simulate iris geometry
///

float3 objCoord = objFlatCoord;
float3 objBumpNormal = normalize(f3tex2D(g_eyeNermel, v2f.UVtex0) * 2.0 - float3(1, 1, 1));
objBumpNormal = 0.350000 * objBumpNormal + (1 - 0.350000) * objFlatNormal;
half3 diffuseCol = h3tex2D(g_irisWhiteMap, v2f.UVtex0);
float specExp = 20.0;
half3 specularCol = h3tex2D(g_eyeSpecMap, v2f.UVtex0) * g_specAmount;

float tea;

float3 centerToSurfaceVec = objFlatNormal; // = normalize(v2f.objCoord)
float firstDot = centerToSurfaceVec.y; // = dot(centerToSurfaceVec, float3(0, 1, 0))
if(firstDot > 0.805000)
{

// We hit the iris. Do the math.

// we start with a ray from the eye to the surface of the eyeball, starting at the surface
float3 ray_dir = normalize(v2f.objCoord - objEyePos);
float3 ray_origin = v2f.objCoord;

// refract the ray before intersecting with the iris sphere
ray_dir = refract(ray_dir, objFlatNormal, g_refraction_u);

// first, see if the refracted ray would leave the eye before hitting the Iris.
float t_eyeballSurface = SphereIntersect(16.0, ray_origin, ray_dir); // 16 = 4 * 4, we assume the sphere of the eyeball is radius 4 here
float3 objPosOnEyeBall = ray_origin + t_eyeballSurface * ray_dir;
float3 centerToSurface2 = normalize(objPosOnEyeBall);

if(centerToSurface2.y > 0.805000)
{

// Display a blue color
diffuseCol = float3(0, 0, 0.7);
objBumpNormal = objFlatNormal;
specularCol = float3(0, 0, 0);
specExp = 10.0;

}
else
{

// transform into irisSphere space
ray_origin.y -= 5.109000;

// intersect with the Iris sphere
float t = SphereIntersect(9.650000, ray_origin, ray_dir);
float3 SphereSpaceIntersectCoord = ray_origin + t * ray_dir;
float3 irisNormal = normalize(-SphereSpaceIntersectCoord);

Eye Shader from Luna
Maximum branch takes 674 cycles
Minimum branch takes 193 cycles.

NVShaderPerf 1.8

Copyright © NVIDIA Corporation 2004

NVShaderPerf – version 2.0

Vertex throughput
GLSL vertex program
Multiple driver versions from one NVShaderPerf
What else do you need?

NVShaderPerf@nvidia.com

mailto:NVShaderPerf@nvidia.com

Copyright © NVIDIA Corporation 2004

NVPerfKit

What is NVPerfKit?
Associated Tools
NVPerfKit 2.0

Copyright © NVIDIA Corporation 2004

NVPerfKit: The Solution!

Why is my app running at 13FPS after CPU tuning?
How can I determine what is going in that GPU?
How come IHV engineers are able to figure it out?

Copyright © NVIDIA Corporation 2004

What is NVPerfKit?

Driver and GPU performance counters
Performance Data Helper (PDH)
Microsoft PIX for Windows

NVPerfHUD functionality inside any application
Application triggered sampling
OpenGL and Direct3D

Copyright © NVIDIA Corporation 2004

NVPerfKit: What it looks like...

Copyright © NVIDIA Corporation 2004

What is in the NVPerfKit package?

Instrumented Driver
Exposes GPU and Driver Performance Counters
Supports OpenGL and Direct3D
Supports SLI Counters

Tools
NVDevCPL
PIX Plugin
NVAppAuth

SDK
Sample Code
Helper Classes
Docs

Copyright © NVIDIA Corporation 2004

OpenGL Signals

Counter Description Official Name

FPS OGL FPS

Frame Time (1/FPS) OGL frame time mSec

Driver Sleep Time (driver waits for
GPU)

OGL frame mSec Sleeping

Copyright © NVIDIA Corporation 2004

Direct3D Signals

Counter Description Official Name

FPS D3D frame FPS

Frame Time (1/FPS) D3D frame time mSec

AGP Memory Used D3D frame agpmem MB

Video Memory Used D3D frame vidmem MB

Driver Time D3D frame mSec in driver

Driver Sleep Time (driver waits for GPU) D3D frame mSec Sleeping

Triangle Count D3D frame tris

Batch Count D3D frame num batches

Locked Render Targets Count D3D Locked Render Targets

Copyright © NVIDIA Corporation 2004

GPU Signals
Vertex Setup

Vertex Shader

Rasterizer

Pixel Shader

Frame Buffer

Texture

gpu_idle
vertex_attribute_count

vertex_shader_busy

culled_primitive_count
primitive_count
triangle_count
vertex_count

fast_z_count
shaded_pixel_count

shader_waits_for_texture

pixel_shader_busy

shader_waits_for_rop

Supported GPUs
Quadro FX 4500
GeForce 7800 GTX
GeForce 6800 Ultra & GT
GeForce 6600

GPU

Copyright © NVIDIA Corporation 2004

NVPerfKit Demo: Pixel Shader Bound

Copyright © NVIDIA Corporation 2004

NVPerfKit Demo: Texture Bound

Copyright © NVIDIA Corporation 2004

What is PDH? What is Perfmon?

PDH: Performance Data Helper for Windows
Win32 API for exposing performance data to user
applications
Standardized interface with many providers and clients

Perfmon: (aka Microsoft Management Console)
Win32 PDH client application
Low frequency sampling (1X/s)
Displays PDH based counter values:

OS: CPU usage, memory usage, swap file usage, network
stats, etc.
NVIDIA: all of the signals exported by NVPerfKit

Copyright © NVIDIA Corporation 2004

Associated Tools: Perfmon

Copyright © NVIDIA Corporation 2004

Associated Tools: NVDevCPL

Copyright © NVIDIA Corporation 2004

Associated Tools: NVIDIA Plug-In for
Microsoft PIX for Windows

Copyright © NVIDIA Corporation 2004

Associated Tools: NVIDIA Plug-In for
Microsoft PIX for Windows

Copyright © NVIDIA Corporation 2004

Helper Classes and Code Samples

CPDHHelper: simplifies using PDH

int nIndex = pdh.add(“countername”);
pdh.sample();
float fValue = pdh.value(nIndex);

CTrace: ring buffer for holding performance data
CTraceDisplay: simple API agnostic graphing library
OpenGL and Direct3D sample apps

Integration of helper classes
Security mechanism usage

Copyright © NVIDIA Corporation 2004

Graphic Remedy’s gDEBugger 2.0

Copyright © NVIDIA Corporation 2004

NVPerfKit 2.0

Simplified Experiments
Targeted analysis to ease bottleneck determination

Supplement PDH based single counters
Multi-pass experiments where multiple GPU counters are
needed to compute results
Exposes all of the power of NVPerfHUD 4.0 to developers

More OpenGL and Direct3D counters
NVPerfHUD 4.0
Linux support

Copyright © NVIDIA Corporation 2004

Simplified Experiments
Usage:
NVPMAddCounter(“ps_utilization”);
NVPMAddCounter(“vs_utilization”);
NVPMAddCounter(“gpu_idle”);
NVPMAllocObjects(50);

int nNumPasses;
NVPMBeginExperiment(&nNumPasses);
for(int ii = 0; ii < nNumPasses; ++ii) {

NVPMBeginPass(ii);

// Draw the frame
NVPMBeginObject(0);
// DPs associated with object 0
NVPMEndObject(0);

NVPMBeginObject(1);
// DPs associated with object 1
NVPMEndObject(1);

// ...
NVPMEndPass(ii);

}
NVPMEndExperiment();
NVPMGetCounterValue(“ps_utilization”, 0, &fPSSol); // 0 == object id
NVPMGetCounterValue(“vs_utilization”, 0, &fVSSol);

NVPerfHUD 4.0

Raul Aguaviva

Copyright © NVIDIA Corporation 2004

Agenda

What is NVPerfHUD?
How does it work?
Demo
Schedule

Copyright © NVIDIA Corporation 2004

What is NVPerfHUD?

Stands for: PERFormance Heads Up Display
Overlays graphs and dialogs on top of your
application
Interactive HUD

Copyright © NVIDIA Corporation 2004

What is NVPerfHUD?

4 different types of HUD
Performance Dashboard
Debug Console
Frame Debugger
Frame Profiler (New in 4.0)

Copyright © NVIDIA Corporation 2004

How to use it

Run your application with NVPerfHUD
Use it as you normally do until you find:

Functional problem: use the debugger
Low FPS: use the profiler

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Resources monitored
Textures
Volume Textures
Cube textures
Vertex Buffers
Index buffers
Stencil and depth surfaces

Resource monitor

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Copyright © NVIDIA Corporation 2004

Performance Dashboard

Speed control

Copyright © NVIDIA Corporation 2004

The simplified graphics pipeline

Vertex
Assembly Vertex Shader Pixel Shader Raster OPerations

Copyright © NVIDIA Corporation 2004

Performance Dashboard Demo

Install
Configure
Drag & Drop

Copyright © NVIDIA Corporation 2004

Debug Console

Copyright © NVIDIA Corporation 2004

Frame Debugger

Copyright © NVIDIA Corporation 2004

Frame Debugger, advanced view

Copyright © NVIDIA Corporation 2004

Frame Profiler

Measures performance counters
strategy

Copyright © NVIDIA Corporation 2004

Frame Profiler, measuring

NVPerfHUD uses NVPerfKit
uses ~40 Performance Counters (PC’s)

Can not read all of them at the same time
Need to render THE SAME FRAME until all
the PC’s are read

Copyright © NVIDIA Corporation 2004

Frame Profiler, strategy

Optimization Strategy:
Group by state is roughly grouping by bottleneck
These groups are called “state buckets”

Procedure
Group draw calls by rendering state into state buckets
Identify the bottleneck of the most expensive state bucket

Solved by NVPerfHUD
Cure the bottleneck with a common corrective action

Copyright © NVIDIA Corporation 2004

Frame Profiler Demo, measuring

Copyright © NVIDIA Corporation 2004

Frame Profiler Demo

Copyright © NVIDIA Corporation 2004

Frame Profiler Demo

Copyright © NVIDIA Corporation 2004

Frame Profiler Demo, advanced view

Copyright © NVIDIA Corporation 2004

About freezing the application

Only possible if the application uses time-based
animation

Stop the clock
Intercept: QueryPerformanceCounter(), timeGetTime()
NO RDTSC!!

Pos += V * DeltaTime

Copyright © NVIDIA Corporation 2004

Schedule

Beta: August
Release : September

Copyright © NVIDIA Corporation 2004

Copyright © NVIDIA Corporation 2004

Questions?

Developer tools DVDs available at our booth
Online: http://developer.nvidia.com

NVGLExpert@nvidia.com
NVShaderPerf@nvidia.com
NVPerfKIT@nvidia.com
NVPerfHUD@nvidia.com
FXComposer@nvidia.com

http://developer.nvidia.com/
mailto:NVGLExpert@nvidia.com
mailto:NVShaderPerf@nvidia.com
mailto:NVPerfKIT@nvidia.com
mailto:NVPerfHUD@nvidia.com
mailto:FXComposer@nvidia.com

Copyright © NVIDIA Corporation 2004

Copyright © NVIDIA Corporation 2004

NVIDIA SDK

Hundreds of code samples and effects that help
you take advantage of the latest in graphics
technology.

Tons of updated and all-new DirectX and OpenGL code samples with
full source code and helpful whitepapers:

Transparency AA, GPU Cloth, Geometry Instancing, Rainbow Fogbow,
2xFP16 HRD, Perspective Shadow Maps, Texture Atlas Utility, ...

Hundreds of effects, complete with
custom geometry, animation and more:

Shadows, PCSS, Skin, Plastics, Flame/Fire, Glow,
Image Filters, HLSL Debugging Techniques,
Texture BRDFs, Texture Displacements,
HDR Tonemapping, and even a simple Ray Tracer!

The Source for GPU Programming

Copyright © NVIDIA Corporation 2004

GPU Gems 2
Programming Techniques for High-Performance
Graphics and General-Purpose Computation

880 full-color pages
330 figures
Hard cover
$59.99
Experts from universities and industry

Geometric Complexity
Shading, Lighting, and Shadows
High-Quality Rendering

General Purpose Computation on
GPUs: A Primer
Image-Oriented Computing
Simulation and Numerical Algorithms

Graphics ProgrammingGraphics Programming GPGPU ProgrammingGPGPU Programming

	Performance Tools
	Performance Tools Agenda
	GPU architecture at a glance
	GPU Pipelined Architecture (simplified view)
	Bottleneck Identification
	Bottleneck Identification
	VTune
	NVGLExpert
	What is it and what does it do?
	Project Status
	NVShaderPerf
	NVShaderPerf
	NVShaderPerf: In your pipeline
	FX Composer 1.7 – Shader Perf
	NVShaderPerf 1.8
	NVShaderPerf 1.8
	NVShaderPerf – version 2.0
	NVPerfKit
	NVPerfKit: The Solution!
	What is NVPerfKit?
	NVPerfKit: What it looks like...
	What is in the NVPerfKit package?
	OpenGL Signals
	Direct3D Signals
	GPU Signals
	NVPerfKit Demo: Pixel Shader Bound
	NVPerfKit Demo: Texture Bound
	What is PDH? What is Perfmon?
	Associated Tools: Perfmon
	Associated Tools: NVDevCPL
	Associated Tools: NVIDIA Plug-In for Microsoft PIX for Windows
	Associated Tools: NVIDIA Plug-In for Microsoft PIX for Windows
	Helper Classes and Code Samples
	Graphic Remedy’s gDEBugger 2.0
	NVPerfKit 2.0
	Simplified Experiments
	NVPerfHUD 4.0
	Agenda
	What is NVPerfHUD?
	What is NVPerfHUD?
	How to use it
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	The simplified graphics pipeline
	Performance Dashboard Demo
	Debug Console
	Frame Debugger
	Frame Debugger, advanced view
	Frame Profiler
	Frame Profiler, measuring
	Frame Profiler, strategy
	Frame Profiler Demo, measuring
	Frame Profiler Demo
	Frame Profiler Demo
	Frame Profiler Demo, advanced view
	About freezing the application
	Schedule
	Questions?
	NVIDIA SDK
	GPU Gems 2 �Programming Techniques for High-Performance Graphics and General-Purpose Computation

