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GPU Programming 
Exposed: 

The Naked Truth 
Behind NVIDIA's Demos 
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Translucency

Displacement Maps

Ray Traced Eye

Luna Suit Shader

Luna Demo
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Motivation for Translucency

To render more fleshy, organic objects
Art direction called for extremely bright lights

Translucency is cool ☺
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Basic Idea

Assume character is between a bright light & 
camera
Determine surface thickness from camera pov
Based on thickness, do a dependent texture lookup 
to find the color of the skin
Calculate facing ratio of the object & camera to light
Based on the facing ratio, combine normal and 
translucent colors
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Try to approximate amount of light going
through the surface

Light
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Computing Thickness

Render back faces into fp16 buffer writing pixel 
position
Render front faces

Fetch the back face position for the given pixel 
using pixel’s screen position
Find the distance between front and back faces
Normalize the distance into [0,1] so we can use 
it as a texture coordinate later

But…
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Computing Thickness

What we find is not 
true thickness
Results are jaggy and edgy
Cannot use it as is

Alternate method:
Render all front faces 
additively, then all the 
back faces with 
subtractive blending
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Computing Thickness

Use computed
approximation but
smooth it using
11x11 sample blur

2 extra passes

Result is smooth
enough not to
produce visible
artifacts in final
composition
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Translucent Skin Color

Given thickness of the surface, 
find the color of the skin when the light 
travels through it
Use the normalized thickness as a texture 
coordinate for the following texture

Allows for good control over how each 
of the densities of the surface looks 
and how quickly they change
Thicker parts end up dark red, 
membranes end up faint orange
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Other Sources

GPU Gems Article “Real-Time 
Approximations to Subsurface 
Scattering” by Simon Green
More samples of using texture 
lookup tricks to achieve 
interesting lighting effect in the 
NVIDIA Developer SDK 
(anisotropic lighting, etc.)
http://developer.nvidia.com/
object/sdk_home.html
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Layer in final composition

Light gets occluded
and scattered as it
moves through the
surface
Render occluders
like skeleton
offscreen
to a buffer

Blur the internals 
along with the 
thickness map to 
simulate light 
scattering around 
bones
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Internal Occluders

Light gets occluded
and scattered as it
moves through the
surface
Render occluders
such as the
skeleton to
an offscreen
buffer

Blur the internals along 
with the thickness map to 
simulate light scattering 
around bones

Skeleton and 
all other internal 
occluders are 
geometry
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Surface Occluders

Light also gets occluded
and attenuated by things on
or close to the surface
Assume veins/arteries
are on the surface
for simplicity
Veins become
a texture
effect

Fade veins where
lights travels through
thick layers of
epidermis
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Vein visibility

When light travels through thick layers of 
epidermis, veins are not as visible
Change the vein layer accordingly
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Areas of Influence

Need to find translucent areas based on light, 
object and camera position

Pow( dot( V, L ), n) is a reasonable approximation
V – vector from a fragment to the camera
L – vector from the light to a fragment
n – some power to make it look good

In case of the vertical plasma beam, use horizontal 
view plane and plasma light line intersection to 
approximate L
This gives us…
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Areas of Influence

This alone is not enough
Translucent effect on the 
skin shows up on parts of 
the object opposite the light
Use dot ( N, L )
to approximate

Remap dot ( N, L ) into a 
slightly different range to 
avoid any hard 
transitions and to 
simulate partial 
translucence
This gives us…
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Combine layer with previous for more 
interesting area of influence
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Interpolant between combined 
translucent color and base shaded color
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Compositing Final Translucent Color

==

xx xx

This gives us…
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Add bloom to bright areas to diffuse light
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Interpolate with the base shaded image
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Base Shaded Image, before translucency
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Final Image
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Displacement Mapping with Occlusion
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Efficient Computation of Distance Maps

See Section 8.4
Source/tools on GPU Gems 2 CD
Danielsson, Per-Erik. 1980. 
“Euclidean Distance Mapping.”
Computer Graphics and Image 
Processing 14, pp. 227–248.
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Parallax Mapping – In games now

Parallax mapping
T. Kaneko et al. “Detailed Shape Representation with 
Parallax Mapping.” In Proceedings of the ICAT 2001 
(The 11th International Conference on Artificial 
Reality and Telexistence), Tokyo, Dec. 2001.

Valid for smoothly varying height fields
No occlusion
No large displacements
No high frequency features
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Displacement Mapping with Occlusion

Resolves self-occlusion
Better for more uneven surfaces
Carved walls with deep relief
Brick / stone
Grate
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Realtime Displacement as Raycasting:

Start on object surface
Follow eye vector until 
hit displaced surface
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Basic idea: Marching through 3D Texture

Create Volumetric texture
‘1’ in empty voxels, ‘0’ in voxels on or in surface

Fragment shader
TanEyeVec, TexCoordIter (U, V, 1.0)
Iteratively increment TexCoordIter by scaled 
TanEyeVec



30

Basic idea: Can we do better?

Steps too big: will miss features
Steps too small: will waste performance
What if we store the distance to nearest surface?
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Nonuniform steps: Sphere Tracing
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Displacement with Occlusion

Vertex Shader Provides

UV Texture Coordinates (texCoord)

Tangent Space Eye Vector (tanEyeVec)

tanEyeVec.x = dot(worldEyeVec, worldTangent);
tanEyeVec.y = dot(worldEyeVec, worldBinormal);
tanEyeVec.z = dot(worldEyeVec, worldNormal);
tanEyeVec = normalize(tanEyeVec);

Eye Displacement Vector (displaceEyeVec)

displaceEyeVec = tanEyeVec * 
float3(1.0, 1.0, 1/bumpDepth);
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Displacement with Occlusion

Fragment shader computes displaced UVs

float3 texCoord = float3(v2f.texCoord.xy, 1.0);
float3 displaceEyeVec = normalize(v2f.displaceEyeVec);

// March the ray (NUM_ITERATIONS = 16)
for (int i = 0; i < NUM_ITERATIONS; i++){

float distance  = f1tex3D(distanceTex, texCoord);
texCoord += distance * displaceEyeVec;

}

// texCoord.xy is now our displaced UV

Fetch textures using displaced UVs
[ Color, Specular, Transparency, Reflection, Refraction, … ]
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Performance

Each iteration is {tex; mad;}
Single cycle on GeForce FX, 6 Series, 7 Series

Number of iterations depends on
Volume texture resolution
Smoothness of data
16 iterations plenty for our tests

Performance with simple lighting:
90M pixels/s on GeForce 6800 GT
180M pixels/s on GeForce 7800 GTX

Simple parallax mapping still faster
Use when surface or angles prevent occlusion
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Issue 1: Texture Stretching

UVs were applied facing the normal
3D material or noise?
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Issue 2: Texture Filtering

Displaced shiny bits can twinkle
Mipmap bias?  Multiple texture samples?
Intelligent post-render blurring?
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Future Work
Issue 1: Improve side stretching 
Issue 2: Better texture filtering
Use curvature and pixel kill to modify silhouettes
This method NOT limited to height fields!
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A practical application of real-time
ray-tracing on today’s GPUs
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The Challenge

Create a realistic 3D eyeball
At times during the demo the eye will be full-screen

Problems to solve:
Refraction of light through the cornea
Wet and shiny eyeball surface
Transparency: light might pass through the side of 
the cornea and hit something else in the scene
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Solution Outline

Use ray-tracing to model the refraction

Perform lighting in object space to simplify math

Procedurally determine which region of the sphere 
is the iris/pupil region

Use Shader Model 3.0 branching to render a 
different shader on each region, blending the two 
shaders on the boundary

Assumptions:
Spherical Eyeball, Caustics ignored

Computing lighting in object space is key for the ray-tracing calculations: the 
ray-sphere intersection code becomes very simpliy when the sphere is 
centered at the origin.  And normals are computed easily by normalizing 
positions.
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Dealing with ray-traced geometry

Drawing procedural iris geometry using ray-tracing 
requires some new tricks:

New shadow coordinates must be computed for 
correct shadow mapped shadows

The boundary between the ray-traced geometry and 
the white of the eyeball is a discontinuity

Can we achieve a smooth transition on the edge?
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Start with a smooth polygon sphere

A simple polygon sphere 
(50x50) was used, which 
ignores the fact that the eye 
actually bulges.  

No other geometry is created 
using triangles.  

The iris is defined procedurally 
by ray-tracing.
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Procedurally compute the Iris Region
The vertex shader passes in the object space coordinates
A dot product in the fragment shader is used to determine the 
perfectly smooth edge of the iris

(0,0,0)

objCoord

(0,1,0)

dot( objCoord, ( 0, 1, 0 ) ) > 0.805?

We found full 32 bit precision ray-tracing math is required for precision 
reasons.  So avoid using half floats until the lighting operations are 
computed.
(0,1,0) is an arbitrary decision for the eye to face the positive y direction.
0.805 is the cos of the angle between (0,1,0) and any vector to a point on the 
iris edge (change this 0.805 value to make the iris region smaller or bigger)
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The white of the eye

1 spotlight and 2 point 
lights + ambient

16 tap uniform 4x4 spread 
shadow lookup for the 
spotlight above

Subtle bump/vein map

Soft-wrap diffuse…

Diffuse Map

Specular Map

Bump Map
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Soft wrap diffuse lighting
GPU Gems (Simon Green): 
“Real-Time 
Approximations to 
Subsurface Scattering”
An approximation to sub-
surface scattering

1-1

1

N dot L

Diffuse Term

Wrap-lighting of 0.2

Standard Lambert
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Standard Lambert
Wrap-lighting of 0.2

Wrap-Diffuse comparison

The math used for the wrap diffuse lighting:

float wrap = 0.2;
float wrap_diffuse = max( 0, ( dot( N, L ) +  wrap ) / ( 1 + wrap ) );

Now use wrap_diffuse instead of the tradition dot( N, L ) term for 
diffuse lighting.
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Environmental reflections &
Cornea layer

Simulate a transparent, smooth, reflective cornea 
layer on top of the entire eye
Two components: 

1) reflection cube map attenuated by a fresnel term
2) very bright specular highlight with a very high 
exponent

Exp = 4000, multiply
Specular color by 6.0

Exp = 4000.  specular 
color = (1,1,1).

fresnel = 0.05 + 0.95 * (1-saturate(dot(N,-V)))^5.
total_light = (diff+spec)*(1-fresnel)+reflLight*fresnel;

Blinn-phong specular highlight: exponent = 4000.  specular 
color of pure white (1,1,1) * 6.0.  
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Fresnel reflection & Cornea highlights only

The reflected light added is subtle, but…
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Fresnel vs. no Fresnel

The fresnel term blends into the dark, reflected 
light at the edges, changing the look dramatically

Fresnel 
Reflections

No Fresnel
Reflections
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Creating the iris
Model the iris geometry as a sphere:

Easy to intersect with using ray tracing
Computing the normals is trivial given the position
The 2nd sphere is positioned perfectly so that our dot product test 
exactly matches the points where the 2 spheres intersect
Not technically the correct shape, but we need it spherical for 
lighting…

Inside of a sphere
Defines the iris geometry

Dot product of these two vectors
(normalized) gives exactly 0.805
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But the cornea and iris are not spheres!

The cornea bulges a bit, and the iris is basically flat.

However, the bulge is exaggerated in this diagram and a 
spherical eye looks fine

We need a slightly spherical iris for lighting reasons…

We ignore the
bulged cornea
here

The bulge is exaggerated in this diagram.  It’s very subtle, so a perfect 
sphere was chosen, but the bulge could be modeled and still work with this 
technique because the incoming ray does not ray-intersect with the eyeball 
geometry.  Only the refracted ray performs an intersection with the eyeball 
geometry, and so long as the back of the eyeball remains spherical, the 
cornea can be warped.
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Lighting on the Iris

The iris is flat in real life, but the refraction causes the lighting 
to behave as though it were effectively shaped like a satellite 
dish (i.e. spherical)
The iris not correctly lit, because caustics are hard
BUT, by modeling the iris as a sphere and ignoring caustics, 
similar results are achieved

Light source real location:
We light from here

Apparent light position:
Iris SHOULD be lit with the light here
But solving for this position is hard and it
may involve multiple solutions or none:
Caustics!

L

Caustics come about because multiple rays entering the cornea with 
refraction can land on the same position (focusing of the rays), or even if 
there is only one ray per position, the density of rays changes with the focus 
causing more lighting in some areas versus others.  This technique is difficult 
to model accurately (photon mapping can be used).  But for an eyeball, not 
much focusing occurs.  The bending of the light does affect the lighting 
though: causing a flat surface to look rounded.
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Tracing those rays
Incoming ray

Normal: used for fresnel
Reflections and cornea highlights

1st ray-sphere intersect:
Did the ray exit back through 
the cornea?

Refracted ray

New normal and position used for
Lighting the inside of the iris

2nd (conditional) ray/sphere test:
If the ray did hit the iris, get the
position and normal for lighting

Ray tracing overview:

1) In the fragment shader the object space coord, normal and eye position are passed in (object space calculations are key, because they reduce the 
complexity of the math substantially)
2) The dot product test decides if the current pixel is on the iris region or not

3) If so, the incoming ray is computed and, from that, the refracted ray

4) The first ray-sphere intersection is done against the procedural sphere that is perfectly aligned with the polygon sphere

5) A second dot product test with the previous ray-intersection point determines if we hit the iris or if the ray exited the eye back through the cornea (it is 
noted later that this dot product and the previous ray-intersection can sometimes be skipped)

6) If the iris is hit, a second ray-sphere intersect is computed to determine where, and a normal is then computed.  Then the new light vectors, half angles 
and other information required for lighting at that position is computed

RAY INTERSECT MATH:

// Note: this assumes sphere space coordinates: the center of the sphere is at (0,0,0)
// rayo = ray original (point)
// rayd = ray direction (vector)
float SphereIntersect( float sphere_radius_squared, float3 rayo, float3 rayd )
{

float3 v = float3( 0, 0, 0 ) - rayo;
float b = dot( v, rayd );
float disc = ( b * b ) - dot( v, v ) + sphere_radius_squared;    
disc = sqrt( disc );
float t2 = b + disc;
float t1 = b - disc;  
return t2;  // we know for our purposes that we always want t2             

}
// The result, t2, gives us the length along our input ray where the intersection occurs
float3 intersection_coord = rayo + t2 * rayd;
float3 intersection_normal = normalize( intersection_coord); // since we are a sphere

REFRACTION MATH:

// it is assumed that the in_ray vector and normal are normalized
// in_u = index of refraction
float3 refract( float3 in_ray, float3 in_normal, float in_u )
{
float3 result;
float cosPhi = dot( -in_ray, in_normal );  
float cosTheta = sqrt( 1 – in_u * in_u * ( 1 - cosPhi * cosPhi ) );
result = in_u * in_ray + ( in_u * cosPhi - cosTheta ) * in_normal;
return normalize( result );

}
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What if the light goes back through the 
cornea?

If the index of refraction is 0.723, light NEVER escapes the 
eyeball.
0.723 is the (unverified) index of refraction for the cornea of a 
human eyeball

No (or low) refraction:
In this case it is necessary
to handle the case when
the ray escapes the eye.
In this rendering a simple
blue constant value was
returned.

Refractive index of 0.723
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Hard edge resolution
If the techniques described thus far are used, a hard edge 
between the white of the eye (even if the diffuse map goes to 
black there) and the iris region is seen

Ugly hard edge
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Solution: blend values near that edge
The white of the eye and the iris use the same lighting model
The following 4 lighting parameters are the only ones that 
differ between the two shaders:

normal
diffuse color
specular color
specular exponent

A lerp is used at the iris boundary to lerp these 4 values
A single set of lighting calculations is performed at the end of
the shader

float DotProductTest = dot( objCoord, (0, 1, 0 ) ); // used earlier to detect the 
iris
t = 1 - ( DotProductTest - 0.805000 ) / ( 1 - 0.805000 );
t = pow( t, 6.0 ); // this shifts the blend region to the very edge of the iris

For each of the listed lighting parameters, a lerp is performed with the 
computed t value.  Then a single set of lighting computations are executed.
e.g.: diffCol = t * eyeWhiteDiffCol + ( 1 – t ) * irisDiffCol;
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No more hard edges
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Shadows inside the eye

How are the correctly warped shadows computed?

Correct iris shadow coordinates Original sphere shadow coordinates



59

Solution:

Pass in the transformation matrix from eyeball object space into
shadow camera view-projection space
Ray-tracing determines where in eyeball object space the true iris 
intersection occurs, so this value transformed by the shadow camera 
matrix gives us new shadow map coordinates and z value

Incoming ray
New position to
transform into
shadowCam space

Old shadow coordinates
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Impossible before GeForce 7800 GTX

Two features of GeForce 7800 GTX make this shader possible
Shader Model 3.0 branching
Incredible pixel performance

The final shader compiles to 289 fragment program assembly 
instructions

Branching helps reduce the number of those instructions 
that get executed, especially on the white areas of the eye
SM3.0 branching is available on GeForce 6800, but there 
simply wasn’t the pixel performance to render this eyeball 
fullscreen in real-time.  
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Performance Comparison

Luna demo: 1280 x 1024 pixels (full-screen eyeball, 
zoomed in on the iris)

GeForce 6800 GT: 8.5 fps
GeForce 7800 GTX: 17 fps
Exactly 2X performance!

Branching vs. No Branching: (eyeball full-screen, 
both white and iris areas showing)

GeForce 7800 GTX, PS2.0: 19 fps
GeForce 7800 GTX, PS3.0: 24 fps



62

Applicability

The rendering performance of this technique scales 
linearly with the number of pixels drawn:

Easily applied to the eyes of 100 characters, all on 
screen simultaneously
Refraction is quite subtle unless the eyes are fairly 
large on screen but is still detectable
The shadow map coordinate correction is probably 
un-necessary for the eyes in a character’s head
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Fancy Hero Suits, 30% off!
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The Challenge

Artist sketches called for a metallic suit:
Multiple metal layers with different properties
Lots of fine detail

Early concept sketch
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From Start to Finish

GeForce 7800 GTX has huge pixel shader 
performance, so let’s use it

Create a very general/flexible shader
Use compositing: light several times with different 
settings and do compositing in real-time
Wire every possible parameter to a slider
Let the artist be as creative as possible
Optimize shader code once the final look is decided
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Sliders Sliders Sliders

Every constant shader param gets wired to a slider 
automatically at load time

There were initially more sliders than seen here.  ☺
All constant inputs to vertex and fragment shaders are scanned at load time and pages of sliders are created and wired up 
automically.
During the prototyping stage, all math was done full precision and a custom mapping of texture inputs and constant inputs 
allowed a constant value and 3 texture inputs to each affect every shading parameter.

At the top of the shader 3 textures were sampled:

float3 texture1 = tex2D( diffTex, coords );
float3 texture2 = tex2D( specTex, coords );
float3 texture3 = tex2D( alphaTex, coords );

Then we build a custom vector:
float3 special = float3( 1.0, texture1.y, texture2.y, texture3.y ); // chosing y for the green channel, arbitrary choice

Now for any lighting parameter:

uniform float4 g_layer1SpecAmount;  // a 4 component constant input per parameter, all driven with sliders

Then:  float finalLayer1SpecAmount = dot( special, g_layer1SpecAmount );

So now g_layer1SpecAmount.x is a constant spec amount value,
g_layer1SpecAmount.y makes the diffuse texture affect the specular amount,
g_layer1SpecAmount.y makes the spec texture affect spec amount, etc…

In the final shader most of these constant values were left at 0, (no parameter had all 3 textures driving it in addition to a 
constant), so this generality was removed during the code optimization step.
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Solution Outline

The shader consists of 3 layers, composited in the 
fragment shader on top of each other
Layer 1 defines a diffuse layer with a subtle, broad, 
noisy specular
Layer 2 defines sharp metallic layers that appear to 
sit underneath layer 1 (but are actually compositied
on top of layer 1)
Layer 3 defines a silhouette lighting effect that 
provides metallic reflections
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Layer 1 Diffuse
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Layer 1 Specular
Amount Texture
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Layer 1 Specular
Lighting calculations

3 specular highlights from 3 lights
(blinn-phong, constant exponent)
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Layer 1 Specular
Color Texture
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Layer 1
Specular Total
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Layer 1 Final Color
(Diff + Spec)
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Layer 1 Final Color with Bump
& High Res. Specular Noise
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Layer 2
Specular Color



76

Layer 2
Specular Lighting 

3 more blinn-phong lights



77

Layer 2
Final Color

No diffuse
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Alpha between Layer 1 and 2

Final Color = alpha * Layer 2 + ( 1 – alpha ) * Layer 1
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Layer 1 and 2 composited together

Final Color = alpha * Layer 2 + ( 1 – alpha ) * Layer 1
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Layer 3 Reflected Light

Lookup with properly computed reflection vector 
into a static cube map
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Layer 3
Color
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Layer 3 alpha

More details soon…
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Final Color

Final color = Layer3Color * alpha + ( 1 – alpha ) * ( Layer1and2composited )
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More Normal Lighting

The previous shots had tons of the layer3 effect as a result of the plasma flying by, 
lighting her suit
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A Closer look at Layer 3 alpha

Essentially a slightly modified dot(N,V) term
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Comparison of dot(N,V) and the custom falloff

dot(N,V)

Custom layer 3 influence function

N dot V provides a silhouette lighting term to work with: the shiny, reflective 
layer (layer 3) is applied at grazing angles

The N dot V is run through a cubic polynomial to smoothen the ramp

The result is scaled to shift it’s area of influence as N dot V ranges from 0 to 
1

Finally, the dampening factor is mulitplied in to bring the result back to 0 near 
extreme grazing angles

This changes the appearance of the highly reflective layer



87

Visual Comparison

dot(N,V) Custom falloff
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Visual Comparison

dot(N,V)

custom

Too dominant over 
the whole surface

The re-scaling makes 
the effect more subtle, 
leaving the underlying 
layer more visible
The darkened 
silhouettes change the 
feel quite a bit
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Final shader stats

238 pixel shader instructions
8 texture inputs per pixel
24 texture samples per pixel
6 Blinn-Phong specular calculations per pixel
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Indirect Lighting
Depth of Field
Omnidirectional 
Shadows

25 renderpasses
Extremely complex shading:

Mike:               85 – 150 instructions
Environment: 74 – 144 instructions

Mad Mod Mike Demo

breakdown of the 25 renderpasses:
6 passes for hard omnidirectional shadows
4 cube map passes for indirect lighting (1 render + 3 blur)
1 cube map pass for soft omnidirectional shadows
0-2 planar shadow passes
6 passes for depth of field & main scene
6 passes for post-processing (blur, glow, composite)
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Direct vs. Indirect Lighting

Direct Lighting:  
Light that falls directly on a surface and illuminates 
it.

Indirect Lighting:
Light that bounces off of a surface (acquiring some 
of its color in the process) and then hits another
surface, illuminating it.
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Direct Lighting

In this image, Mike is lit 
by just two point 
lights.

Notice...

That a good portion of 
his body is completely 
dark (unlit).

That the color of 
nearby surfaces 
doesn’t affect his 
lighting at all.
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Indirect Lighting

Here, we’ve added 
indirect lighting to the 
main character.

Notice...

Mike picks up the 
strong red bounced 
light from the tool 
chest.

Formerly unlit areas 
now feature realistic
ambient light.
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More examples [ direct light only ]
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More examples [ plus indirect light ]
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Indirect Lighting

Why not use many dim point lights to achieve the effect?

Would need dozens of lights
At least one light for each salient piece of furniture
Several lights for each wall, floor, etc.

Would need to set & maintain the lights’...
...positions
...colors (based on average object colors)
...intensities (lots of assumptions & approximations 
here!)

Slow, ugly, high-maintenance...
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Indirect Lighting

A much simpler approach: 
Each frame...

1.  Render scene (minus main character) into a 
small cubemap.

2.  Blur the cubemap.

3.  When lighting the character, use samples from 
the blurred cubemap to augment the traditional 
(direct) lighting.
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Step 1: Render scene into small cubemap

96x96 faces; BGRA format 
(plus 16-bit z-buffer)

Each frame, place cube in same location as 
character’s belly (...or nearby skeletal joint)
Draw environment, minus the character
Use lo-res mesh proxies, if available (e.g. for LOD)
Draw objects using a simplified fragment shader

Our regular shaders were 100-150 instructions
Our simplified ‘radiance’ shader was 44 instr.
(Still blazing fast due to low # of pixels)
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Simplified shader

Compute simple diffuse (N • L) lighting for 2 point lights; skip 
specular lighting.
Sample main “color” texture only (no bump, spec, etc. maps)

Use +1 mipmap bias since results will be blurred anyway
Attenuate the brightness of the final color you write by the 
distance of the shaded point from the cube (character) center!

Do this so faraway objects contribute less light (really, 
color)
Near objects contribute 100%; far objects darkened to 
~20%

You can over-saturate the final color to exaggerate the effect.
We didn’t factor in shadows, but probably should have!
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Step 2: Blur the cubemap
3 passes (really 3*6 = 18, but it’s fast)

one to blur cylindrically around X axis; then Y, Z.

Note that a naive cubemap blur will have seams 
along the edges

For useful details on how to implement a good 3D blur and 
how to prevent these seams, please see the notes 
attached to this slide!

Bonus: reuse the original cubemap for dynamic 
reflections

geometry: draw a 1x1x1 cube (12 polys) into each face of each cube
only 2 of the 12 will actually draw pixels
don’t reuse any vertices
encode the cube’s “face normal” in each vertex’s TEXCOORD0

vertex shader: one for each blur axis (X, Y, Z)
vertex shader computes 7 vectors & passes them on to fragment shader in TEXCOORD0..6
first one is just the normalized world-space vertex position

float3 cube_lookup_dir = 
normalize(world_space_vertex_position);

float3 baseVec = cube_lookup_dir;
v2f.tex0 = baseVec;

next 3 are that vector repeatedly rotated by some fixed angle around X axis (or Y/Z)
we used 11.5 degrees (0.2 radians)

last 3 are that (original) vector repeatedly rotated in the opposite direction
(this way, we only need to take sin and cos once per vertex)

Seams:
The cubemap will have visible seams in it, where colors don’t match up at face edges after blurring.
Solution: in the vertex shader, push “baseVec” away from the face normal by a small amount.
Amount depends on size of cubemap you’re reading from.  

// 642: -.019, 802: -.0182; 962: -.0175; 1282: -.016
const float bias = -0.0175;  
float3 baseVec = lerp(cube_lookup_dir, a2v.tex0, bias); 

Fragment shader:
Given 7 vectors from the vertex shader, takes 13 samples of the src. cube

7 along the vectors from the vertex shader
6 along interpolated vectors
every sample has a little constant random jitter (looks better)
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Indirect Lighting
Here’s a chrome Mike, perfectly reflecting the 4 stages of the 
blurred cube map.
As you can see, it’s important to do all 3 cylindrical blurs!  
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Step 3: Light the Character

When lighting the character, use samples from the 
blurred cubemap to augment the direct lighting.

The big question: what vector should we use to sample 
the cubemap?

Reminder: cubemaps are indexed by a single 3D vector!

( Ideally, we’d want a 6D volume texture that we 
sample using surface positions & normals.  But 
that’s a little ways off…)
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Indirect Lighting

Sample the blurred cube 
using the:

vertex normal

Looks as if environment is 
very far away; sub-optimal 
for a close environment

• Way too many green 
highlights (from left)

• Feet aren’t picking up 
much brown/purple 
(from bottom)
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Indirect Lighting

Sample the blurred cube 
using the:

vertex position relative 
to character’s (or 
cube’s) center 

An improvement, but 
would be better yet if 
surface normal had 
some impact on the 
lighting…
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Indirect Lighting

In practice, blend the two 
vectors together

Here, the blended 
sampling vector is based 
mostly on the normal, but 
vertex position has an 
influence

~ Analogous to Bjorke’s
localized reflections
technique in GPU Gems.

Resulting lighting looks 
very realistic!



106

Technical Explanation
At right, consider the point on the 
helmet vs. the point on the leg
Both points have same normal 
direction (white arrows)
If we use just the normals to sample 
the cubemap, both will sample it at the 
orange arrow and return a pinkish 
color.
This feels wrong for the helmet point -
intuitively, the helmet sample vector 
should hit closer to the end of the 
dashed line!
The blue vector is what we’d need for 
that...
Build blue vector by adding a bit of the 
relative vertex position (green arrow) 
to the normal (white arrow):

blue arrow = white arrow + 
C*green arrow
sample vector = normal + 
C*rel_vtx_pos

Bends the normal “up” for the helmet 
and “down” for the leg, so both hit the 
right spot!  (blue arrow for helmet; 
pink arrow for leg)
Works just the same in 3 dimensions.
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Indirect Lighting

Shader code

float3 rel_vtx_pos = wsCoord – g_wsIndirLightCubePos; 
float3 sample_vec = wsNormal +  C * rel_vtx_pos;  
half3 env_diffuse = h3texCUBE(blurred_XYZ, sample_vec);

Notice that we don’t normalize rel_vtx_pos or 
sample_vec!!
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Indirect Lighting

How much to mix in the relative vertex position (‘C’) depends on
how far away the environment is (roughly) and how large the
character is (in world space units)...

1. environment infinitely far away:  use C == 0
2. environment is a large room:       use C ~= 2.5 / wsCharHeight
3. environment is a small room:      use C ~= 7.0 / wsCharHeight

‘wsCharHeight’ is rough estimate of the height of your character, 
in world space units.
“small room” means about the size of the rooms in the Mad Mod 
Mike demo (relative to the size of Mike).
these values were empirically determined; tweak to your liking!
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Other Notes

A mix of ~75% direct & ~25% indirect lighting looks best.

Traditional direct lighting ( N • L ) should provide most of 
the light, and is where the effects of shadows & bump 
maps are most visible.

Indirect light approximates light bouncing off of walls 
and objects, helping the character look truly immersed in 
the environment.

To add Indirect Lighting for multiple characters, you’d have 
to render & blur a separate cubemap for each one.
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Indirect Lighting

Finally, if you have any shadows in your shader, slightly 
dim the env_diffuse term where there is shadow

• env_diffuse *= (0.8 + 0.2*shadow_mult);
• not exactly accurate, but it looks nice

Final lighting equations:

• diffuse_light = env_diffuse
+ ∑ ( (N • Li) * LightColori * shadow_multi);

• final_color = diffuse_light * diffuse_color
+ spec_light * spec_color;
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Indirect Lighting

Performance: 
Mad Mod Mike running on a GeForce 7800 GTX:

Render-to-cube pass 1.0 ms / frame *
Cube-blurring passes (together) < 0.9 ms / frame
Extra final shading cost +  1.0 – 1.5 ms / frame **  
Total cost:                                       2.9 – 3.4 ms / frame   
Cost, in FPS:                       costs about 2.5 fps at 30 fps

* depends on # of objects, # of vertices, and depth complexity 
(amount of overdraw).  These #s are for Mad Mod Mike demo.

** depends on # of pixels the character occupies on-screen
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Indirect Lighting

Other References

For a faster implementation based on spherical harmonics 
(...that also does specular convolution!), please see:

King, Gary.  "Real-time Computation of Dynamic 
Irradiance Environment Maps" in GPU Gems 2.  pp 167-
176.  Ed. Matt Pharr.  Addison-Wesley, 2005.  
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Depth of Field

Photos in the real world 
have a focal depth, a 
distance at which objects 
are in focus.  Objects 
nearer or farther get 
progressively blurrier.

In computer graphics, 
though, every pixel in a 
rendered image is 
perfectly in focus -
unless you work hard to 
avoid it.  
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Depth of Field: Layered method

Layered method: render objects to two different 
images (layers), blur the background layer, and 
composite.

(+) Looks good when each object fits neatly into 
either the “foreground” or “background”

(–) Objects “pop” as you move around the scene 
and they migrate between foreground &
background layers

(–) Looks bad when a single object should span 
both layers (...e.g. a long railing, table, etc).
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Depth of Field: Depth-based blur method

Depth-based blur method: blurring kernel radius is 
dilated per-pixel based on Z depth

(+) Maintenance-free (don’t have to group objects 
into “foreground” vs “background” every frame)

(+) Looks good when a single object spans both

(–) When blurring, pixels 
from foreground “bleed”
onto blurry background; 
this looks really bad!
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Depth of Field: Combined method

Our solution: combine the two approaches

Render the scene twice: a “far” pass and a 
“near” pass.  

Two passes are identical except for the 
camera’s near/far clip planes.

All objects exist in both passes (...although 
most will be view-frustum culled from at least 
one pass).

Then blur each image (separately!) using depth-
based blur
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Process

1. Render far pass.
2. Draw a fullscreen quad to the near pass, 

sampling the far pass results (color + depth) & 
doing depth-based blur as you go.  Write depth 
as 1.0.

3. Render near pass objects on top of that 
“background” image.

4. Do depth-based blur on the near pass.
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DoF: Advantages & Limitations
Advantages:

(+) Depth-of-field effect is continuous in Z
no popping as camera/objects move
no visible line where pixels go from blurry to crisp

(+) crisp foreground pixels don’t blur onto background pixels
because blur is done on each layer separately

(+) it’s fast!!!

Limitations: 
only handles crisp foreground 
over blurry background (can’t 
handle blurry objects in front 
of in-focus area) ... for now.
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Foreground in focus, background blurry

Notice that with only one 
layer, the “near” pixels 
contaminate the blurring 
of the “far” pixels.  (Not 
enough information!)

With two layers, the 
foreground doesn’t 
bleed onto the 
background. 
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Depth of Field: Performance
Vertex processing cost: 

usually 1.3X; up to 2X  (...meaning 1.3X the load, or 30% slower)
depends on view-frustum culling

Fragment processing cost: 
usually 1.1X; up to ~1.6X

Far pass is 0.5X since it can be done at half-size (71% x 71%)
Near pass is ~ 0.5X since “foreground” usually only covers ½ the 
pixels.
Plus ~ 0.1X overhead for doing depth-based blur on each layer
0.5X + 0.5X + 0.1X = 1.1X

Overall cost:
~30% if you’re vertex-bound (complex meshes)
~10% if you’re fragment-bound (long shaders)
(~0% if you’re CPU-bound)

vertex processing cost: depends on % of objects whose bounding spheres cross the 
z-boundary [between the near and far passes] and can’t be culled from one pass or 
the other.
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DOF and multisampling (AA)
Problem:
If you’re using multisampling (AA), the hardware won’t let you 
read depth samples from a multisampled depth buffer in a pixel 
shader (...which we need in order to do depth-based blur).

Solution 1: render the near & far passes an extra time, to 2 
auxiliary non-AA depth buffers, with shading turned off

Doubles your vertex processing load and your fill load, 
although rendering depth-only is double-speed on 
GeForce 6 & 7.

Solution 2: use glCopyTexImage2D to copy & convert from the 
multi-sampled depth buffer to a single-sample one.  
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DoF: One more tricky part!
When rendering objects to the near pass, use depth-compare 
function of LESS instead of LESS_EQUAL.  
This guarantees that all pixels with depth values of 1.0000 
came from the far pass.
Then, in the depth-based blur of the near pass, don’t blur 
pixels whose depth value is exactly 1.0000, since they came 
from the far pass.

Otherwise all pixels from the far pass would get double-
blurred and - worse yet - crisp foreground objects would 
bleed color onto the blurry background objects.

Recommendation: use 24-bit depth for near pass
(or if using AA, just for the auxiliary depth buffer); 

Otherwise, lack of precision will cause some of the 
farthest near-pass pixels to not get blurred at all, 
creating a band of crispy pixels.
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DoF: Specifics for Mad Mod Mike

Far pass: 912 x 512     2xAA
Near pass: 1280 x 720     4xAA

Near-far boundary (depth) is determined...
Dynamically, when the main character is 
onscreen, tuned so that he’s in focus.
Statically, otherwise – it’s just set at a fixed 
depth that works for the general environment
Easy to do smooth transition in-between
(lerp, using a fuzzy notion of “being on-screen”)
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DoF: Details to get a
fast variable-radius blur kernel

Maximize use of bilinear interpolation
Sample 4 texels at once by using a 0.5-texel offset where 
possible.

Sampling the depth buffer:
Bind depth texture as if it were a color texture and sample 
as usual.
Remember: depth values are stored hyperbolically!

Samples are taken and added to one of two sums: 
“inner” or “outer”

Inner sum: always fully weighted
Outer sum: weight is a function of the depth value
(acts like a lerp between a small & large kernel)

* depth values are stored hyperbolically, so blur radius has to be a 
funky function of depth buffer lookup; hack it for speed, though
(accuracy does not matter)

we used: 
far pass:

half2 blur_rad = saturate(   (f.xx – half2(0,1)*0.5 )*2   );
near pass:

half blur_rad = saturate( (f - 0.85) * (1.0/(1 - 0.85)) );
(we should have used a 1D texture lookup to accelerate these!)

*if far pass is at lower resolution, you’ll want to blit first to a same-size 
texture for this blur operation (so bilinear interp. alignment is right), 
then blit that to background of near pass with non-texel-aligned 
samples.

* Note: multiply sample (and its weight) by 4 if it represents 4 texels!!
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DoF: Details to get a
fast variable-radius blur kernel

Far pass: 17 samples      (top image)
inner sum = 5 samples; weight is 17
outer sum = 12 samples; weight is 0..48 
(as depth ranges from 0..1)

Near pass: 9 samples      (bottom image)
inner sum = 5 samples; weight is 17
outer sum = 4 samples; weight is 0..16 
(as depth ranges from 0..1)
smaller kernel because near pass is 
less blurry
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DoF: Future Work
Future Work: add a 3rd layer in front of the near pass, to get 
“blurry-crispy-blurry” along Z.  

Process:
clear 3rd layer’s alpha to 0
render objects into it w/alpha==1
blur the Alpha channel using simple depth-based blur
blur the RGB channels differently for this layer: throw out 
samples whose alpha==0 (...these pixels will be black / 
shouldn’t contribute to the color average). 

can’t use bilinear interp for this Æ have to take 4X the 
no. of samples

compositing: 
blit this layer to the framebuffer last, using blurred 
alpha as opacity.

Shader code:
half4  samp0  = sample(x0y0).rgba;
...
half4  sampN = sample(xNyN).rgba;
half    blurred_alpha = (samp0.a + ... + sampN.a);
half3  blurred_rgb = (samp0.rgb * samp0.a + ... + sampN.rgb * sampN.a) / blurred_alpha;
outColor = half4(blurred_rgb, blurred_alpha);
// (note: this shader code is incomplete – blur kernel needs to be resizeable)

Other potential future work:
Allow larger maximum blur radius for the far pass

Mad Mod Mike: far (blurry) pass looked good with an up-to-65-pixel kernel.
For a third layer, you’d probably need “mega-blur”

for larger blurs, definitely faster to use a 2-pass separable convolution!  (1D blur in X, 
then Y)

Get “net” blur kernel for nearest pixels in far pass, & farthest pixels in near pass, to be virtually 
identical

this would eliminate any visible artifacts at the near-
far boundary.
in practice, though, close is good enough.
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Omnidirectional Shadows

Our criteria for hard vs. soft shadows: 
Objects close to the light should cast soft shadows;
faraway objects should cast hard shadows.

Mike’s jetpack casts 3 types of shadows:
1. Soft omnidirectional shadows that his body casts 

on the room
2. Hard omnidirectional shadows that room objects 

cast on each other 
3. (Hard planar shadows that he casts on himself)
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Soft Omni Shadows
Soft omni shadows piggyback on the Indirect Lighting 
cubemap; they sit in the alpha channel.

They are projective... they have no concept of a depth test

[IMAGE]Means shadows are 
projected or painted on, 
like decals, depth-unaware

Works well as long as you 
know the shadow 
receivers (room objects) 
won’t come between the 
light and the shadow-
casters (Mike).
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Soft Omni Shadows: Full Process

1. ( Clear RGBA of cubemap to 0,0,0,1 )
2. ( Render Indirect Lighting into cubemap’s RGB channels)
3. Turn RGB write masks off; alpha-write mask on
4. Place camera at the light source (...it was at character’s center!)
5. Render low-res version of main character into alpha channel of 

the cubemap, writing 0 to alpha
6. When cubemap is blurred for the Indirect Lighting pass,

blur full RGBA instead of just RGB.
7. For final render of the room:

a) Sample the Indirect Lighting cubemap using the vector to 
the jetpack light and take alpha value
b) Modulate the lighting from the jetpack by that value

*6: ...we blurred the alpha channel less, though; otherwise shadows too blurry
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Hard Omni Shadows

Hard omni shadows would ideally use a depth cubemap with 
1024x1024 faces, but hardware doesn’t support sampling from
depth cubemaps yet.

Instead, use a “virtual” cubemap (or “VCM”), which is a
3072 x 2048 2D depth texture that we conceptually divide into 
six 1024 x 1024 tiles.

Think of it as an unwrapped cubemap.

Implementation based partially on the paper:
"Efficient Omnidirectional Shadow Maps" Gary King & 
William Newhall. In ShaderX3, pp 435-448.   Charles River 
Media, 2004.
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Rendering Depth to the VCM
[shadow-casting]

Render room objects [depth 
only / no shading] up to six 
times, to six different 1024 x 
1024 tiles (viewports) on the 
3072 x 2048 texture.

Each viewport’s camera is 
aligned to a different axis: 
{ +X +Y +Z –X –Y –Z }

(Performance note: most 
objects get view-frustum 
culled in 3-5 of the passes, 
reducing vertex & fill loads)
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Sampling from the VCM: [shadow-
receiving]

Cubemaps are usually indexed (sampled) via a 
normal (unit-length direction) vector... 

...but we have a virtual cubemap, indexed by 2D 
(u,v) coordinates 

Solution: create a “Remap cubemap” to translate.
given a normal, the Remap cubemap tells you 
the equivalent u / v coords at which to sample 
the *virtual* (unwrapped) cubemap.
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Remap cubemap details

Size: 64x64 faces is *plenty*

Channels: only need two (encode u coord, v coord)

Format: use float4_16
Rendering to a float4_16 cubemap works on all 
6- & 7-series cards!
Pack each value (u,v) into 2 channels (.rg, .ba) 
(carefully - see slide notes!)

Generate Remap cube dynamically at startup
Saves the trouble of reading/writing from disk

why the other formats don’t work:
float4_32 you can’t sample with bilinear interpolation

float2_32 cubemaps aren’t supported by hardware yet
float2_16 has insufficient precision for large values (~3071)
HILO (2-ch, 16-bit uint) would work very well, but you can’t render to 

it.  (Works if you want to generate your Remap cubemap offline & save it to disk.)
BGRA won’t work (with u in .rg and v in .ba) with bilinear 

interpolation because when you sample it, the 4 values are interpolated *in only 8 
bits*, and reconstruction fails.  

float4_16:
-you can’t pack two floats into 4 halves, using the 

pack_2half / unpack_2half (bitwise) instructions, and read them back properly using 
bilinear interpolation.  The reason is because these instructions store the upper & 
lower 16 bits, and when reading them back from the texture, the hardware fetches 4 
float4_!6 values, interpolates them as halves, and THEN would do the bitwise 
reconstruction – but the data is bogus at that point.

-see the hidden slides at the end of the Mad Mod 
Mike presentation for an acceptable way of packing the 2 values into 4 fp16 
channels.
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Reducing Aliasing

Danger: samples can dip into 
neighboring tiles! 
- Can be caused by single tap... 

(due to bilinear interpolation)
- Or by multiple taps 

(due to offsets) 

As with any shadow map, use Percentage-Closer 
Filtering (bilinear interpolation on the VCM shadow test)
Can also take multiple taps (samples) and average the 
results
- Fastest to sample the Remap cube just once, then 

offset the resulting UV coords in 2D.  (see image)

* use an irregular sampling kernel, so some samples always get bilinearly interpolated.  (example: rotated 4 
queens pattern here)
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Solution: Add a ‘margin’ to each tile

1. Render to the 6 viewports with a 
camera angle slightly > 90 
degrees

2. Construct your Remap cubemap
to compensate

Please see the slides at the
end of this presentation for full details on:

Determining the FOV (field of view) to use for your 
shadow-casting camera
How to dynamically construct the Remap cubemap
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Hard Omni Shadows

Fragment shader for receiving hard omnidirectional 
shadows:

• About 6 instructions for 1 tap
• About 16 instructions for 4 taps

• [suitable for GeForce 7-series’ breakfast]

• For fragment shader code and other details, please 
see the notes attached to this slide

* Shader must know near & far clip plane values (n, f) for the shadow-casting passes.
Best if these are constants – can be folded into other computations

•Also needs to know VCM face size if you’re doing multiple taps, for offsetting UV’s
•Shader code follows...

// const inputs:
//   need to know the clip plane distances used 
//   the in shadow-casting passes
const float n = 10.0; // near clip plane distance
const float f = 1000.0; // far clip plane distance
const float VCM_facesize = 1024;

// derived values
// details: see "Efficient Omnidirectional Shadow Maps" paper
const float2 cLightQ = float2(

-2*f*n/(f-n),       // GL: 2fn/(f-n)      DX: f/(f-n)
(f+n)/(f-n)         // GL: (f+n)/(f-n)    DX: n*f/(f-n)

);
const float  c1 = 0.5*cLightQ.x;
const float  c2 = 0.5 + 0.5*cLightQ.y - zbias_const;
const float2 VCM_size = VCM_facesize * float2(3,2);
const float2 VCM_size_inv = 1.0/VCM_size;

// use Remap cube to get uv coords for sampling the VCM
// note: do all vector computations in world space! (ws)
float3 wsOmniLightVec = g_wsOmniLightPos - v2f.worldCoord.xyz;
float4 temp = f4texCUBE(RemapCube, wsOmniLightVec);
const float2 weights = float2( 8192.0, 8.0 );
temp *= weights.xyxy;          // unpack [.rg -> u coord, .ba -> v coord ]
float3 shadowCoord;
shadowCoord.x = temp.x+temp.y;
shadowCoord.y = temp.z+temp.w;

// use 'max' function to figure out which cube face 
// our point projects to, then get Z for our pt. 
// *along that face's axis*
// details: see "Efficient Omnidirectional Shadow Maps" paper
float3 LightVecAbs = abs(wsOmniLightVec);
float MA = max(max(LightVecAbs.x, LightVecAbs.y), LightVecAbs.z);   
shadowCoord.z = c1/MA + c2;

option 1: single tap
half shadow_mult = h1texcompare2D(VirtCubeMap, shadowCoord );

option 2: multiple taps
// one possibility: use a rotated 4-queens-like pattern...
half shadow_mult = 0.25*(

h1texcompare2D(VirtCubeMap, shadowCoord + float3(
VCM_size_inv.xy*float2(-0.4, 1.0), 0))

+ h1texcompare2D(VirtCubeMap, shadowCoord + float3(
VCM_size_inv.xy*float2(-1.0,-0.4), 0))

+ h1texcompare2D(VirtCubeMap, shadowCoord + float3(
VCM_size_inv.xy*float2( 0.4,-1.0), 0))

+ h1texcompare2D(VirtCubeMap, shadowCoord + float3(
VCM_size_inv.xy*float2( 1.0, 0.4), 0))

);
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Other artifacts:
At first, you might see large, dark 
square areas (top image) where 
points are in shadow that 
shouldn’t be
To fix, decrease shadow-casting-
pass FOV slightly by a fudge 
factor

Ours was FOV *= 0.989
Don’t drop FOV too far, or you’ll 
get shadow discontinuities where 
the projected ‘virtual cubemap’
face changes (bottom image)
It can also help to tweak the 
polygon offset scale & bias for 
your shadow-casting pass
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Near clip plane

Caution: don’t let 
shadow-caster objects 
get closer to the light 
than the near clip plane 
distance

...or this will happen   Æ

Solution: decrease the 
near clip plane distance.  
(Other tips in slide 
notes...)

Decreasing the near clip plane distance:  Not too much, though! –
* depth values are stored hyperbolically...
* If only using depth16, try to keep near:far ratio at 1:100 (i.e. near=7, 

far=700) or less for optimal Z-precision.
* Use 24-bit depth buffer if you need a bigger ratio than 1:100.
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Mad Mod Mike
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Hard Omni Shadows [HIDDEN SLIDE]

- Formula for the camera field of view 
(FOV) to use for rendering into the 
VCM:- fov = 2 * atan((N/2) / (N/2 – b))- yields an FOV that is >90 degrees

- Remap cube must compensate for 
this...- Each tile of the VCM now holds a 

> 90-degree FOV rendering...- So the Remap cube must only 
point us to samples within a sub-
region of each tile on the VCM: 
the region holding the equivalent 
of a 90-degree-FOV rendering.

Adding margin pixels to each tile
Example: imagine you have 512x512 tiles in your VCM and you want 
a 4-pixel “margin” in each tile.  
Æ Let N = 512, b = 4
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Generating the remap cubemap: 
- create a float4_16 cubemap with 64x64 faces- draw one fullscreen quad to each cube face- use triangle strip with indices = { 0, 1, 2, 3, 0, 1 }   //draws 4 triangles; 2 get backface

culled- vertex shader just passes through the position & texcoord0 data (UV’s).- fragment shader just writes the packed UV coords directly to the RG + BA outputs.  
Packing code:- const float f = 8.0;   // must match value in shadow-receiving shader!- float2 temp = saturate( v2f.c_texCoord.xy );- float2 msb = floor( temp * f ) / f;- float2 lsb = frac( temp * f ); //(temp - msb) * f;- out.xyzw = float4(msb.x, lsb.x, msb.y, lsb.y);- The four XY’s for each face:- (+)X:   { (1,1) (-1,1) (1,-1) (-1,-1) } (-)X:   { (-1,1) (1,1) (-1,-1) (1,-1) }- (+)Y:   { (-1,-1) (1,-1) (-1,1) (1,1) } (-)Y:   { (-1,1) (1,1) (-1,-1) (1,-1) }- (+)Z:   { (-1,1) (-1,-1) (1,1) (1,-1) } (-)Z:   { (1,1) (1,-1) (-1,1) (-1,-1) }- Note: these values are for GL; if using D3D, might need to flip sign on the Y coords!- The four UV’s for each face:- let i = { 0 for +X/-X,  1 for +Y/-Y,  2 for +Z/-Z }- let j = { 0 for +X/+Y/+Z,  1 for -X/-Y/-Z }- let u0 = (    b) / N + i*0.33333 let v0 = (    b) / N + j*0.5 - let u1 = (N-b) / N + i*0.33333 let v1 = (N-b) / N + j*0.5- UV coords for the 4 verts = { (u0,v0),  (u0, v1),  (u1, v0),  (u1, v1) }

Hard Omni Shadows [HIDDEN SLIDE]
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Previous work: Nalu
Hair procedurally grown from a mesh

Hair Guides driven by a Particle System 

Physics in world-space

Physics is blended with a static haircut

Static haircut
stored in 
local-space

Allows basic
shape control
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Nalu’s hair is not good enough

Rigid scalp
Lack of artistic control

Little control, zero styling
Hair properties uniform
across the scalp

Missed opportunity for optimization
Bottom-line: not good enough

See Chapter 23 of GPU Gems 2
http://developer.nvidia.com/GPUGems2
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Nalu’s hair is not good enough

Nalu’s hair was mainly shaped by the physics 
simulation

Little control, zero styling
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New demos, new needs

Mad Mod Mike has a short beard
On a rather fleshy and malleable face

Need stylized hair
Meaning not procedurally created
Luna: schoolgirl & hero
Mad Mod Mike also has a haircut

Both demos require better
Styling, Flexibility & Control
Without a major performance penalty
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New demos, new needs
Mike’s “biker” look required
a beard
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New demos, new needs
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Mike’s beard: hair on a non-rigid surface

Mad Mod Mike uses blendshapes and skinning
Blendshapes = morphing
Skinning = mesh driven by a skeleton
Order = morph, then skin

The skin surface motion can’t be expressed by a 
single matrix

Too bad: we need the hair guides to follow the skin 
motion
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Mike’s beard: hair on a non-rigid surface

Problem: Need the hair guides to be placed 
correctly in World Space
No information to skin/blendshape the hair

No skin weights
No morph targets

Solution: store the guides in a space that stays 
constant.

Texture Space! 
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Mike’s beard: hair on a non-rigid surface

Texture Space is normally used for bump mapping
In our case it could be called “surface space”

There is one basis (matrix) for each point on the 
surface

You might already have it at the vertex level

Each guide hair should have an associated basis

At load time, transform the guide hairs into texture 
space for storage
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Mike’s beard: hair on a non-rigid surface

At each frame all the basis are re-computed
The easy way is to encode a basis in each morph target, 
then proceed to morph & skin

Use the basis as a matrix to transform the guides to 
World Space

You’ve got hair on a malleable surface!
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The need for stylized hair

Underwater hair had a purpose
Looks cool
No haircut needed ☺
Can’t do that forever…

Styling means tools
A custom one was used for Dawn/dusk

Not integrated in art pipeline
“Shave and Haircut” is a Maya plug-in

Artists can actually use it
Hair becomes tweakable with a known set of tools
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The need for stylized hair

Shave & Haircut screenshot
By Joe Alter. (www.joealter.com)
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The need for stylized hair

Hair can be stylized down to the Control Point level
Shave & Haircut creates NURBS curves

NURBS information is discarded
Simple lines would have been good enough

Bezier curves are generated by the application
Control points are exported as a text file
But that’s not all…
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Stylized hair - additional hair controls

Information stored as textures applied to the scalp
Density

How many interpolated hair per “strand”
Color
Kill

Prevent interpolated hair from being drawn
Still being processed

Length
Additional length control
Great for procedural usage (random…)
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Stylized hair - additional hair controls

These controls allow a better utilization of the 
resources: Guide hairs & Vertices
Use more hair where it matters

On the hairline (Luna)
Side burns, beard (Mad Mod Mike)

Reduce it where it can’t be seen
Top of the head (Luna)
Under the helmet (Mad Mod Mike)
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Stylized hair - additional hair controls

Good hair for less!

(screenshot)(screenshot)

70000 vertices123000 vertices
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The need for stylized hair

Screenshots
MMM hair, Luna school, Luna hero
Kill, Density…
6 total (3x2)
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Alternative hair styling technique

Produce life-like hair geometry
“Modeling Hair from Multiple Views”
Hair geometry (lines, curves) extracted from 
photos

Microsoft Research Asia and the Hong Kong University of Science & Technology
Eyal Ofek, Yichen Wei, Long Quan, Heung-Yeung Sum
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Alternative hair styling technique

Comes with per-vertex color too!
(+) easy acquisition
(+) non labor-intensive
(+) fairly accurate
(-) does not capture invisible parts
(-) some hairstyles are difficult to mimic (curly...)
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Mission accomplished

Malleable surfaces can receive hair
Hair styling is better

But still very difficult
Additional controls allow

Non-uniform hair properties across the surface
Smarter resources usage

Still not good enough!
Will never be ☺
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Future work

Styling remains very challenging
Hair dynamics, evaluation, tessellation needs to be 
faster

CPU is too slow, move work to the GPU
Better resources usage

Introduce better Level Of Details (LOD)
Based on distance, viewport

Improve shading
Introduce smarter physics (frictions…)
And more…
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