

DX10, Batching, and
Performance Considerations

Bryan Dudash
NVIDIA Developer Technology

The Point of this talk

“The attempt to combine wisdom and power
has only rarely been successful and then only
for a short while. “- Albert Einstein

DX10 has many new features
Not just geometry shader!

Opportunity to re-org your graphics
architecture

Agenda

Short History of DX9 performance

DX10 Performance Potential

Case Study: Geometry Particle System

Case Study: Skinned Instanced Characters

Conclusions

DX9 and Draw calls
“I wasted time, and now doth time waste me ”-
William Shakespeare

Most DX9 games are CPU bound

Often this is because of high #’s of draw calls
Developers have mostly learned this by now

Often reducing draw calls isn’t trivial
Render state changes necessitate new draw

DX9 Instancing
Not really in the API

ID3DDevice9::SetStreamS
ourceFreq()

Set up 2 streams

Modulus Vertex Stream 0
Base Mesh Stream

Divide Vertex Stream 1
Instance Data Stream

(x0 y0 z0) (nx0 ny0 nz0)

(x1 y1 z1) (nx1 ny1 nz1)

…

(x99 y99 z99) (nx99 ny99 nz99)

00

11

……

Vertex Stream 0Vertex Stream 0

worldMatrix0

worldMatrix1

…

worldMatrix49

00

11

……

Vertex Stream 1Vertex Stream 1

DX9 Instancing Performance
Test scene that draws 1 million diffuse shaded polys
Changing the batch size, changes the # of drawn instances
For small batch sizes, can provide an extreme win
There is a fixed overhead from adding the extra data into the vertex stream
The sweet spot changes based on CPU Speed, GPU speed, engine overhead, etc

Instancing versus Single DIP calls

0 500 1000 1500 2000 2500

Batch Size

FP
S

Instancing
No Instancing

………………………So what about Direct3D10?

How much faster is DX10?

“I was gratified to be able to answer promptly. I
said I don't know. “ – Mark Twain

But not just instancing

Fundamentally alter graphics data flow
Increase parallelism

Push more data processing to GPU

DX10 Performance Features

General Instancing Support

General data “buffer” concept

Texture Arrays

Geometry Shader
Yury will cover this in great detail later

Stream Out

General Instancing Support

Fundamentally
unchanged

But, fundamentally in the
API

Single draw just a special
case

More useable due to
other DX10 features

(x0 y0 z0) (nx0 ny0 nz0)

(x1 y1 z1) (nx1 ny1 nz1)

…

(x99 y99 z99) (nx99 ny99 nz99)

00

11

……

VertexVertex DataData BufferBuffer

worldMatrix0

worldMatrix1

…

worldMatrix49

00

11

……

Instance DataInstance Data BufferBuffer

Instance ID

Unique “system” value

Incremented per instance

Custom per instance
processing

Instance 0

Instance 1

Instance 2

Color = float4(0,ID/2,0,0);

Data Buffer Object

Input Assembler accepts
Vertex Buffer
Index Buffer
General Buffer

Can only render to a general Buffer
And limited to 8k elements at a time

Multiple passes can get you a R2VB

Texture Arrays

All texture types can be used as an array

Indexable from Shader

Handy for instancing to store different maps
for different instances

Texture Arrays and MRT

Interesting tradeoff

Texture Array is one big texture
With clamp constraints per “element” in the array

Can output tris from GS to different slice
Possibly not writing to all slices
Adds extra VS/GS operations

Regular MRT writes to all MRTs
Fixed B/W usage
But lower GS/VS ops

Geometry Shader

Handy to allow us to offload MORE work from
CPU

Yury will go over GS potential in great depth

Stream Out

Data output from Geometry Shader
Or Vertex Shader if GS is NULL

Early out rendering pipeline before
the Rasterization stage

Allows us to fill dynamic vertex
buffers and use in later pass.

Even as per instance data

Case Study: Instanced Particles
Particle simulation takes up a lot of CPU

Updating a particle buffer costs
bandwidth

Often particle system just for effects
Game object don’t need to know particle
positions

Geometry particles are cool!
More accurate lighting than sprites
Debris, broken glass, lava blobs

Basic Idea

Simulation done in first pass

Position results used in second pass
Each particle is an instanced mesh

Buffer0 and Buffer1 swapped every frame

Buffer1
Instance Data

Buffer0
Position & Velocity Data

VB0
Mesh Data

Vertex Shader

Instanced Rendering

Stream Out

Pass 1
Pass 2

Key Bits

Stream Out
Stream out into an instance data buffer
Do particle simulation in VS

Instance data
Vec4 – Position.xyz, lifetime
Vec3 – Velocity.xyz

On CPU Maintain freelist
“inject” updates into instance stream
UpdateSubresource with a subrect

D3D10_INPUT_ELEMENT_DESC
{

L"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT,

0, 0, D3D10_INPUT_PER_VERTEX_DATA, 0

},

{

L"TEXTURE0", 0, DXGI_FORMAT_R32G32_FLOAT, 0,

12, D3D10_INPUT_PER_VERTEX_DATA, 0

},

{

L"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT,

0, 20, D3D10_INPUT_PER_VERTEX_DATA, 0

},

{

L"particlePosition", 0, DXGI_FORMAT_R32G32B32A32_FLOAT,

1, 0, D3D10_INPUT_PER_INSTANCE_DATA, 1

},

{

L"particleVelocity", 0, DXGI_FORMAT_R32G32B32_FLOAT,

1, 16, D3D10_INPUT_PER_INSTANCE_DATA, 1

},

Note the
4x32

Format

Considerations
Collision

Can handle simple collision primitives in shader

Works for effects, not interactive objects

Dead Particles
Assign a special NAN value to be interpreted as
dead particle

Extensions

Motion Blur
Setup final output to a RT
Use velocity data to calculate blur

Already have velocity from simulation

Add in simple collision primitives
Sphere
Box
Terrain texture

Case Study: Skinned Instancing

Would like to draw many animated characters

Often these characters require upwards of a
dozen draw calls EACH

Lots of VS constants updated per draw
For palette skinning

We’d like to batch together same mesh
characters

Basic Idea

Encode all animations
into a texture

A single character mesh
Contains same info for
traditional palette
skinning

Each instance uses
different animation

Time controlled by CPU

Mesh VB

Instance
Animation

Data

Animation Data
(Texture) Vertex Shader

Rasterization

VTF

UpdateSubResource

Key Bits

Vertex Texture (VTF)
All animations

Vertex Mesh Stream (static)
Vertex Data (ref pose)
Bone indices & weights

Instance Stream (dynamic)
Animation offset
Frame offset
Time lerp

Animation Texture

A “texel” is a row of the
bone matrix

4 texels form a single bone

Example
50 bone, 60 frame animation

12,000 pixels
Easily stored in a 128x128

Animation Frame

Animation Frame

Animation

All Animations

Animation Texture

Cannot be 1D Texture or generic Buffer
Max size is 8192

Could be a Texture Array

Thus we encode our data linearly into a 2D
texture

Load Bone HLSL Function
// Calculate a UV for the bone for this vertex
float2 uv = float2(0,0);

// if this texture were 1D, what would be the offset?
uint baseIndex = animationOffset + frameOffset + (4*bone);

// Now turn that into 2D coords
uint baseU = baseIndex%g_InstanceMatricesWidth;
uint baseV = baseIndex/g_InstanceMatricesWidth;
uv.x = (float)baseU / (float)g_InstanceMatricesWidth;
uv.y = (float)baseV / (float)g_InstanceMatricesHeight;

// Note that we assume the width of the texture is an even multiple of 4,
// otherwise we'd have to recalculate the V component PER lookup
float2 uvOffset = float2(1.0/(float)g_InstanceMatricesWidth,0);

float4 mat1 = g_txInstanceMatrices.Sample(g_samPoint,float4(uv.xy,0,0));
float4 mat2 = g_txInstanceMatrices.Sample(g_samPoint,float4(uv.xy + uvOffset.xy,0,0));
float4 mat3 = g_txInstanceMatrices.Sample(g_samPoint,float4(uv.xy + 2*uvOffset.xy,0,0));
float4 mat4 = g_txInstanceMatrices.Sample(g_samPoint,float4(uv.xy + 3*uvOffset.xy,0,0));

return float4x4(mat1,mat2,mat3,mat4);

Considerations

This example is necessarily simple
Non-main characters/cutscenes
Real games have lots of data dependencies
Physics/Collision

In game cutscenes?

Processing and data loads onto GPU
But GPU is most often idle

Extensions

Use Texture Array to store single animation in
a slice

Use TextureArray to encode multiple maps
Normals as well as Albedo

Conditionally kill geometry in GS
Armor, Shields, etc

Animation palette evaluation in GPU pass
Output the animation textures.

Conclusions

“Deliberation is the work of many men. Action,
of one alone. “ – Charles De Gaulle

Instancing is more useful in DX10

Working with data is easier
Think about how you can restructure your data

More opportunity for GPU simulation

Questions?

bdudash@nvidia.com

mailto:bdudash@nvidia.com

	DX10, Batching, and Performance Considerations
	The Point of this talk
	Agenda
	DX9 and Draw calls
	DX9 Instancing
	DX9 Instancing Performance
	How much faster is DX10?
	DX10 Performance Features
	General Instancing Support
	Instance ID
	Data Buffer Object
	Texture Arrays
	Texture Arrays and MRT
	Geometry Shader
	Stream Out
	Case Study: Instanced Particles
	Basic Idea
	Key Bits
	D3D10_INPUT_ELEMENT_DESC
	Considerations
	Extensions
	Case Study: Skinned Instancing
	Basic Idea
	Key Bits
	Animation Texture
	Animation Texture
	Load Bone HLSL Function
	Considerations
	Extensions
	Conclusions
	Questions?

