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Practical Metaballs and
Implicit Surfaces
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Agenda

= The idea and motivation
= Implementation details
= Caveats & optimizations
= Where to go from here
= Conclusion
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What are isosurfaces?

= Consider a function f(x,y,2)
Defines a scalar field in 3D-space

= Isosurface S Is a set of points for which
f(X,y,z)=const

= f(x,y,z)=const can be thought of as an
iImplicit function relating x, y and z

Sometimes called implicit surfaces
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What are isosurfaces?

= T(X,¥,2) can come from
Scattered data array
Mathematical formula

« |sosurfaces are important data
visualization tool
Medical imaging
Science visualization
Hydrodynamics
Cool effects for games!
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= Metaballs
i
- = A particularly interesting case
':Ilfj = Use implicit equation of the form
= ZN: o
~ =
= [x-pi
= Gradient can be computed directly
N 2.1
grad(f)=-2 ———-(X-p;)
= x=pil

= Soft/blobby objects that blend into each other

Perfect for modelling fluids
T1000-like effects
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Metaballs are cool!
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The marching cubes algorithm

@ A well-known method for

scalar field polygonization ° °
(o] (o]
= Sample f(x, y, z) on a cubic
lattice ° °
] (o] (o]
@ For each cubic cell...
- Estimate where isosurface o o

Intersects cell edges by linear
Interpolation

- Tessellate depending on o o
values of f() at cell vertices
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The marching cubes algorithm

-0
o
&
0
O

« Each vertex can be either “inside” or
“outside”

= For each cube cell there are 256 ways for
Isosurface to intersect it

Can be simplified down to 15 unique cases
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Geometry shaders in DX10
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From CPU

Vertex Shader
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Geometry Shader Triangles with adjacency
3
®
Raster -1 2
® L

Lines with adjacency
Pixel Shader

To Framebuffer GameDevelopers
Conference
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Implementation - basic idea

Calculate Extract Shade

CPU

f(x, vy, 2) Iso-surface surface

Vertex .. Geometry Pixel
shader ° . shader shader

=~ App feeds a GPU with a grid of vertices

¢

« VS transforms grid vertices and computes
f(x, y, z), feeds to GS

= GS processes each cell in turn and emits
triangles
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-1 A problem...
in ;
F r: . . .
%f: = Topology of GS input Is restricted
= - Points
- Lines
- Triangles

- with optional adjacency info

= Qur “primitive” is a cubic cell
Need to input 8 vertices to a GS
A maximum we can input is 6 (with trianglead))
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Solution

@ First, note that actual input topology Is
irrelevant for GS

E.g. linead] can be treated as quad input

= Work at tetrahedra level
Tetrahedron is 4 vertices - perfect fit for linead]!

@ We'll subdivide each cell into tetrahedra
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Marching Tetrahedra (MT)
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= Tetrahedra are easier to handle in GS
No ambiguities in isosurface reconstuction
Always output either 1 or 2 triangles
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Generating a sampling grid
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@ There’s a variety of ways to subdivide
Along main diagonal into 6 tetrahedra — MT6
Tessellate into 5 tetrahedra — MT5
Body-centered tessellation — CCL

= Can also generate tetrahedral grid
directly
AKA simplex grid
Doesn’t fit well within rectilinear volume
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Sampling grids
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Sampling grids comparison

Low

Low Med Low

High High Med

Low Med High
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VS/GS Input/output

// Grid vertex
struct SampleData

{
float4 Pos : SV _POSITION;
float3 N - NORMAL;
float Field : TEXCOORDO;
uint Islnside : TEXCOORD1;
};

// Surface vertex

struct SurfaceVertex

{
float4 Pos : SV _POSITION;
float3 N - NORMAL;

};

//
//
//
//

//
//

Sample position
Scalar field gradient
Scalar field value
“Inside” flag

Surface vertex position
Surface normal
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= ertex ager
E // Metaball function
: // Returns metaball function value In .w
:[: // and 1ts gradient In .xyz
= :
Tloat4 Metaball(float3 Pos, float3 Center, float RadiusSq)
{
float4 o;
float3 Dist = Pos - Center;
float InvDistSq = 1 /7 dot(Dist, Dist);
0.Xyz = -2 * RadiusSq * InvDistSq * InvDistSq * Dist;
o.w = RadiusSqg * InvDistSq;
return o;
}
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Vertex Shader

#deTine MAX_METABALLS 32

L
"

SampleData VS _SampleField(float3 Pos : POSITION,
uniform Tloat4x4 WorldViewProj,
uniform Tloat3x3 WorldViewProjlIT,
uniform uint NumMetaballs, uniform float4 Metabal Is[MAX METABALLS])

i
n:
P—
1
% |
=

SampleData o;
float4 Field = O;

for (uint 1 = 0; 1I<NumMetaballs; 1++)
Field += Metaball(Pos, Metaballs[i1].xyz, Metaballs[i].w);

0.Pos = mul(float4(Pos, 1), WorldViewProj);
o.N = mul(Field.xyz, WorldViewProjliIT);
o.Field = Field.w;

o.IsInside = Field.w > 1 ? 1 : O;

return o;
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== Geom Shad
e eometry Shader
E // Estimate where isosurface intersects grid edge
:[ : SurfaceVertex Calclntersection(SampleData vO, SampleData vl)
5 {
- SurfaceVertex o;
float t = (1.0 - vO.Field) /7 (vi.Field - vO.Field);
0.Pos = lerp(v0.Pos, vl1.Pos, t);
o.N = lerp(vO.N, v1.N, t);
return o;
+
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Geometry Shader

[MaxVertexCount(4)]
void GS_TesselateTetrahedra(lineadj SampleData In[4],

inout TriangleStream<SurfaceVertex> Stream)
{

// construct index for this tetrahedron

uint Index =
(In[O].IsInside << 3) | (In[1]-IslInside << 2) |

(In[2]-IsInside << 1) | In[3]-IsInside;
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const struct { uint4d e0; uintd el; } EdgeTable[] = {
{0,0,0,0,0,0,0, 1%, // all vertices out
{3,0,3,1,3,2,0,0%, // 0001
{2,1, 2,0,2,3, 0, 0%, // 0010
{2,0,3,0,2,1, 3, 1%, // 0011 - 2 triangles
{1, 2,1, 3,1, 0,0, 0%, // 0100
{1, 0, 1, 2, 3, 0, 3, 2}, // 0101 - 2 triangles
{1, 0, 2, 0, 1, 3, 2, 3}, // 0110 - 2 triangles
{3, 0,1, 0, 2, 0,0, 0%, //O0111
{0, 2,0, 1, 0,3, 0,03}, // 1000
{0,1,3,1,0, 2,3, 2%, [// 1001 - 2 triangles
{0,1,0, 3, 2,1, 2, 3%, // 1010 - 2 triangles
{3,1, 2,1, 0,1, 0, 0%, // 1011
{0,2,1, 2,0, 3,1, 3}, // 1100 - 2 triangles
{1, 2,3,2,0,2,0,0%, // 1101
{0, 3,2,3,1,3,0,0%} // 1110

}:
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Edge table construction
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const struct { uint4 e0; uintd el; } EdgeTable[] = {
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// ..
{13, 0,|3, 1,3, 2, 0, 0}, // index = 1
/7 ..
¥
Index = 0001,

I.e. vertex 3 is “inside”
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= Geometry Shader
EE : // .. continued
8 // don"t bother if all vertices out or all vertices In
2 if (index > 0 & index < 15)
= o {
uint4 e0 = EdgeTable[index].e0;
uint4 el = EdgeTable[index].el;
// Emit a triangle
Stream.Append(CalclIntersection(In[e0.x], In[e0O.y]));
Stream.Append(Calclintersection(In[e0.z], In[e0.w]));
Stream.Append(CalclIntersection(Inf[el.x], In[el.y]D);
// Emit additional triangle, 1T necessary
it (el.z 1= 0)
Stream.Append(Calclintersection(In[el.z], In[el.w]));
+
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Respect your vertex cache!

= f(x, y, z) can be arbitrary complex
E.g., many metaballs influencing a vertex

= Need to be careful about walk order
Worst case is 4x more work than necessary!
Straightforward linear work is not particularly
cache friendly either
= Alternatively, can pre-transform with
StreamOut
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Respect your vertex cache!

« Can use space-filling fractal curves
Hilbert curve
Swizzled walk

@ We'll use swizzled walk

« To compute swizzled offset, just
Interleave x, y and z bits

X = XX,

Y=Y3Y.%1Yo
Z=1,2,2,

swizzle(X,Y,z) = ¥52,Y,2,¥1%.Z,YoXq

I_
o
ul
In
=T
8 1
i
=

GameDevelopers

Conference



pers

S Hgﬁ

.

GameDevelo

Conference

L]
ay by
wy e
L] .
----------
a,y ]
wy a
a,y "
L] L]

Swizzled walk

O—>0
20
O—0
Corrr ()
—o0
—o0
o0
—>0

Linear walk

Linear walk vs swizzled walk
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Tessellation space

= Object space

Works if you can calculate BB around your
metaballs

= View space

Better, but sampling rate is distributed

Inadequately
GameDevelopers

Conference



Tessellation in post-projection
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View-space Post-projection space

= Post-projective space
Probably the best option
We also get LOD for free!
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Problems with current
approach

@ Generated mesh Is over-tessellated
General problem with MT algorithms

« Many triangles end up irregular and
skinny
Good sampling grid helps a bit

(a) MT, smooth (b) MT, triangles GameDevelOPerS
Conference
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Possible enhancements

= Regularized Marching Tetrahedra (RMT)
Vertex clustering prior to polygonization
Generated triangles are more regular
For details refer to [2]

= Need to run a pre-pass at vertex level,

looking at immediate neighbors

For CCL, each vertex has 14 neighbors
GS input is too limited for this ®
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More speed optimizations

= Can cull metaballs based on ROI
Only 3 or 4 need to be computed per-vertex

@ Can use bounding sphere tree to cull

Re-compute it dynamically on a GPU as
metaballs move

= Cool effect idea — particle system
metaballs
Mass-spring can also be interesting
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Conclusion

= DX10 Geometry Shader can be efficiently
used for iIsosurface extraction
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= Allows for class of totally new cool effects
Organic forms with moving bulges
GPGPU to animate metaballs
Add noise to create turbulent fields
Terminator2 anyone?
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= [1] J.Patera, V.Skala “Centered Cubic
Lattice Method Comparison”

= [2] G.M.Treece, R.W.Prager and
A.H.Gee “Regularised Marching
Tetrahedra: improved iso-surface
extraction”
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Questions?
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@ yuralsky@nvidia.com
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