| GameDevelopers I““.

,.-'" Conference ;

MARCH 20-24
SAN JOSE, CALIFORNIA

L d ol T '.'-5

www.gdconf.com

ll;_ In__

} GAME DEVELOPERS CHOICH AWARDS E:. } INDEPEMOENT DAMES FESTIVAL l:l

..||I-. = ||. . !

il
1 \ |
§ WDC MOBILE II| | BERIDES GAMES SUMMIT | | GAME CONMECTION |
¢ i) i |

Practical Metaballs and
Implicit Surfaces

~0
o
Q
0
&)

Yury Uralsky
NVIDIA Developer Technology

=

i

W
b=
B 1
B [
=

g GameDevelopers
ZVIDIA. ™ Conference

i

In
=T
3 4
T
=

~0
o
Q
0
&)

Agenda

= The idea and motivation
= Implementation details
= Caveats & optimizations
= Where to go from here
= Conclusion

GameDevelopers

Conference

-0
=
&
0
O

I_
-
i
In
=T
8 1
i
=

What are isosurfaces?

= Consider a function f(x,y,2)
Defines a scalar field in 3D-space

= Isosurface S Is a set of points for which
f(X,y,z)=const

= f(x,y,z)=const can be thought of as an
iImplicit function relating x, y and z

Sometimes called implicit surfaces

GameDevelopers

Conference

-0
=
&
0
O

What are isosurfaces?

= T(X,¥,2) can come from
Scattered data array
Mathematical formula

« |sosurfaces are important data
visualization tool
Medical imaging
Science visualization
Hydrodynamics
Cool effects for games!

I_
-
ul
In
=T
8 1
i
=

GameDevelopers

Conference

=
O
m::
= Metaballs
i
- = A particularly interesting case
':Ilfj = Use implicit equation of the form
= ZN: o
~ =
= [x-pi
= Gradient can be computed directly
N 2.1
grad(f)=-2 ———-(X-p;)
= x=pil

= Soft/blobby objects that blend into each other

Perfect for modelling fluids
T1000-like effects

GameDevelopers

Conference

tn T el
T ——
- } o TR b
AR '5'.-,'.:»1;
el 8
. - 3

Metaballs are cool!

GameDevelopers

Conference

-0
o
&
0
O

I_
o
ul
i
=T
8 1
i
=

The marching cubes algorithm

@ A well-known method for

scalar field polygonization ° °
(o] (o]
= Sample f(x, y, z) on a cubic
lattice ° °
] (o] (o]
@ For each cubic cell...
- Estimate where isosurface o o

Intersects cell edges by linear
Interpolation

- Tessellate depending on o o
values of f() at cell vertices

GameDevelopers

Conference

The marching cubes algorithm

-0
o
&
0
O

« Each vertex can be either “inside” or
“outside”

= For each cube cell there are 256 ways for
Isosurface to intersect it

Can be simplified down to 15 unique cases

())) (6
=D
1= By T

I_
o
ul
i
=T
L
i
et

GameDevelopers

Conference

Geometry shaders in DX10

-0
o
&
0
O

From CPU

Vertex Shader

=

il'-u:

i
=T
L
i
=

5
Geometry Shader Triangles with adjacency
3
®
Raster -1 2
® L

Lines with adjacency
Pixel Shader

To Framebuffer GameDevelopers
Conference

-0
=
&
0
O

I_
o
ul
i
=T
8 1
i
=

Implementation - basic idea

Calculate Extract Shade

CPU

f(x, vy, 2) Iso-surface surface

Vertex .. Geometry Pixel
shader ° . shader shader

=~ App feeds a GPU with a grid of vertices

¢

« VS transforms grid vertices and computes
f(x, y, z), feeds to GS

= GS processes each cell in turn and emits
triangles

GameDevelopers

Conference

3
O
=
-1 A problem...
in ;
F r: . . .
%f: = Topology of GS input Is restricted
= - Points
- Lines
- Triangles

- with optional adjacency info

= Qur “primitive” is a cubic cell
Need to input 8 vertices to a GS
A maximum we can input is 6 (with trianglead))

GameDevelopers

Conference

-0
=
&
0
O

I_
o
ul
i
=T
8 1
i
=

Solution

@ First, note that actual input topology Is
irrelevant for GS

E.g. linead] can be treated as quad input

= Work at tetrahedra level
Tetrahedron is 4 vertices - perfect fit for linead]!

@ We'll subdivide each cell into tetrahedra

GameDevelopers

Conference

Marching Tetrahedra (MT)

-0
o
&
0
O

= Tetrahedra are easier to handle in GS
No ambiguities in isosurface reconstuction
Always output either 1 or 2 triangles

I_
o
ul
i
=T
L
i
=

GameDevelopers

Conference

Generating a sampling grid

0
5
(&)
-
m-

@ There’s a variety of ways to subdivide
Along main diagonal into 6 tetrahedra — MT6
Tessellate into 5 tetrahedra — MT5
Body-centered tessellation — CCL

= Can also generate tetrahedral grid
directly
AKA simplex grid
Doesn’t fit well within rectilinear volume

I_
il
=
n
}_t?
L
i
=

GameDevelopers

Conference

Sampling grids

GameDevelopers

Conference

0
o
O
2
(4

-

i

i
.
8 T
N IS
= i

Sampling grids comparison

Low

Low Med Low

High High Med

Low Med High
GameDevelopers

Conference

T

"

~0
o
Q
0
&)

" E o -
"

LN B N

ili
iy
F...
8 |
% |
o

VS/GS Input/output

// Grid vertex
struct SampleData

{
float4 Pos : SV _POSITION;
float3 N - NORMAL;
float Field : TEXCOORDO;
uint Islnside : TEXCOORD1;
};

// Surface vertex

struct SurfaceVertex

{
float4 Pos : SV _POSITION;
float3 N - NORMAL;

};

//
//
//
//

//
//

Sample position
Scalar field gradient
Scalar field value
“Inside” flag

Surface vertex position
Surface normal

GameDevelopers

Conference

P_~n
= -?
O
=V Shad
= ertex ager
E // Metaball function
: // Returns metaball function value In .w
:[: // and 1ts gradient In .xyz
= :
Tloat4 Metaball(float3 Pos, float3 Center, float RadiusSq)
{
float4 o;
float3 Dist = Pos - Center;
float InvDistSq = 1 /7 dot(Dist, Dist);
0.Xyz = -2 * RadiusSq * InvDistSq * InvDistSq * Dist;
o.w = RadiusSqg * InvDistSq;
return o;
}

GameDevelopers

Conference

T

"
"

~0
o
Q
0
&)

Vertex Shader

#deTine MAX_METABALLS 32

L
"

SampleData VS _SampleField(float3 Pos : POSITION,
uniform Tloat4x4 WorldViewProj,
uniform Tloat3x3 WorldViewProjlIT,
uniform uint NumMetaballs, uniform float4 Metabal Is[MAX METABALLS])

i
n:
P—
1
% |
=

SampleData o;
float4 Field = O;

for (uint 1 = 0; 1I<NumMetaballs; 1++)
Field += Metaball(Pos, Metaballs[i1].xyz, Metaballs[i].w);

0.Pos = mul(float4(Pos, 1), WorldViewProj);
o.N = mul(Field.xyz, WorldViewProjliIT);
o.Field = Field.w;

o.IsInside = Field.w > 1 ? 1 : O;

return o;

GameDevelopers

Conference

P_~n
= -?
O
== Geom Shad
e eometry Shader
E // Estimate where isosurface intersects grid edge
:[: SurfaceVertex Calclntersection(SampleData vO, SampleData vl)
5 {
- SurfaceVertex o;
float t = (1.0 - vO.Field) /7 (vi.Field - vO.Field);
0.Pos = lerp(v0.Pos, vl1.Pos, t);
o.N = lerp(vO.N, v1.N, t);
return o;
+

GameDevelopers

Conference

-0
o
&
0
O

L
L]

Geometry Shader

[MaxVertexCount(4)]
void GS_TesselateTetrahedra(lineadj SampleData In[4],

inout TriangleStream<SurfaceVertex> Stream)
{

// construct index for this tetrahedron

uint Index =
(In[O].IsInside << 3) | (In[1]-IslInside << 2) |

(In[2]-IsInside << 1) | In[3]-IsInside;

I_
.
i
I
'-.
|I i
T
=

const struct { uint4d e0; uintd el; } EdgeTable[] = {
{0,0,0,0,0,0,0, 1%, // all vertices out
{3,0,3,1,3,2,0,0%, // 0001
{2,1, 2,0,2,3, 0, 0%, // 0010
{2,0,3,0,2,1, 3, 1%, // 0011 - 2 triangles
{1, 2,1, 3,1, 0,0, 0%, // 0100
{1, 0, 1, 2, 3, 0, 3, 2}, // 0101 - 2 triangles
{1, 0, 2, 0, 1, 3, 2, 3}, // 0110 - 2 triangles
{3, 0,1, 0, 2, 0,0, 0%, //O0111
{0, 2,0, 1, 0,3, 0,03}, // 1000
{0,1,3,1,0, 2,3, 2%, [// 1001 - 2 triangles
{0,1,0, 3, 2,1, 2, 3%, // 1010 - 2 triangles
{3,1, 2,1, 0,1, 0, 0%, // 1011
{0,2,1, 2,0, 3,1, 3}, // 1100 - 2 triangles
{1, 2,3,2,0,2,0,0%, // 1101
{0, 3,2,3,1,3,0,0%} // 1110

}:

GameDevelopers

Conference

Edge table construction

~0
o
Q
0
&)

const struct { uint4 e0; uintd el; } EdgeTable[] = {

=

il

i
=T
L
i
=

// ..
{13, 0,|3, 1,3, 2, 0, 0}, // index = 1
/7 ..
¥
Index = 0001,

I.e. vertex 3 is “inside”

GameDevelopers

Conference

P_~n
o
2O
qu]
(da)
= Geometry Shader
EE : // .. continued
8 // don"t bother if all vertices out or all vertices In
2 if (index > 0 & index < 15)
= o {
uint4 e0 = EdgeTable[index].e0;
uint4 el = EdgeTable[index].el;
// Emit a triangle
Stream.Append(CalclIntersection(In[e0.x], In[e0O.y]));
Stream.Append(Calclintersection(In[e0.z], In[e0.w]));
Stream.Append(CalclIntersection(Inf[el.x], In[el.y]D);
// Emit additional triangle, 1T necessary
it (el.z 1= 0)
Stream.Append(Calclintersection(In[el.z], In[el.w]));
+

GameDevelopers

Conference

-
il
.4
n
}_t?
KR
S
=z

0
=
&)
-
o

Respect your vertex cache!

= f(x, y, z) can be arbitrary complex
E.g., many metaballs influencing a vertex

= Need to be careful about walk order
Worst case is 4x more work than necessary!
Straightforward linear work is not particularly
cache friendly either
= Alternatively, can pre-transform with
StreamOut

GameDevelopers

Conference

0
=
)
0
N

Respect your vertex cache!

« Can use space-filling fractal curves
Hilbert curve
Swizzled walk

@ We'll use swizzled walk

« To compute swizzled offset, just
Interleave x, y and z bits

X = XX,

Y=Y3Y.%1Yo
Z=1,2,2,

swizzle(X,Y,z) = ¥52,Y,2,¥1%.Z,YoXq

I_
o
ul
In
=T
8 1
i
=

GameDevelopers

Conference

pers

S Hgﬁ

.

GameDevelo

Conference

L]
ay by
wy e
L] .

a,y]
wy a
a,y "
L] L]

Swizzled walk

O—>0
20
O—0
Corrr ()
—o0
—o0
o0
—>0

Linear walk

Linear walk vs swizzled walk

90:209.:

doE I..._._n__u__._._

-0
=
&
0
O

I_
o
ul
In
=T
8 1
i
=

Tessellation space

= Object space

Works if you can calculate BB around your
metaballs

= View space

Better, but sampling rate is distributed

Inadequately
GameDevelopers

Conference

Tessellation in post-projection

0
=
)
0
N

I_
-
ul
In
b=
8 1
i
=

View-space Post-projection space

= Post-projective space
Probably the best option
We also get LOD for free!

GameDevelopers

Conference

0
=
)
0
N

I_
-
i
i
l—
i
T -
=

Problems with current
approach

@ Generated mesh Is over-tessellated
General problem with MT algorithms

« Many triangles end up irregular and
skinny
Good sampling grid helps a bit

(a) MT, smooth (b) MT, triangles GameDevelOPerS
Conference

-
il
=
n
}_t?
KR
S
=z

0
=
&)
-
o

Possible enhancements

= Regularized Marching Tetrahedra (RMT)
Vertex clustering prior to polygonization
Generated triangles are more regular
For details refer to [2]

= Need to run a pre-pass at vertex level,

looking at immediate neighbors

For CCL, each vertex has 14 neighbors
GS input is too limited for this ®

GameDevelopers

Conference

I_
il
=
n
}_t?
L
i
=

0
5
(&)
-
m-

More speed optimizations

= Can cull metaballs based on ROI
Only 3 or 4 need to be computed per-vertex

@ Can use bounding sphere tree to cull

Re-compute it dynamically on a GPU as
metaballs move

= Cool effect idea — particle system
metaballs
Mass-spring can also be interesting

GameDevelopers

Conference

0
=
)
0
N

Conclusion

= DX10 Geometry Shader can be efficiently
used for iIsosurface extraction

I_
-
ul
In
b=
8 1
i
=

= Allows for class of totally new cool effects
Organic forms with moving bulges
GPGPU to animate metaballs
Add noise to create turbulent fields
Terminator2 anyone?

GameDevelopers

Conference

0
=
)
0
N

I_
o
ul
In
=T
8 1
i
=

References

= [1] J.Patera, V.Skala “Centered Cubic
Lattice Method Comparison”

= [2] G.M.Treece, R.W.Prager and
A.H.Gee “Regularised Marching
Tetrahedra: improved iso-surface
extraction”

GameDevelopers

Conference

Questions?

0
o
O
2
(4

@ yuralsky@nvidia.com

-

i

i
-
8 T
N IS
= i

GameDevelopers
Conference

	Practical Metaballs and Implicit Surfaces
	Agenda
	What are isosurfaces?
	What are isosurfaces?
	Metaballs
	Metaballs are cool!
	The marching cubes algorithm
	The marching cubes algorithm
	Geometry shaders in DX10�
	Implementation - basic idea
	A problem…
	Solution
	Marching Tetrahedra (MT)
	Generating a sampling grid
	Sampling grids
	Sampling grids comparison
	VS/GS Input/output
	Vertex Shader
	Vertex Shader
	Geometry Shader
	Geometry Shader
	Edge table construction
	Geometry Shader
	Respect your vertex cache!
	Respect your vertex cache!
	Linear walk vs swizzled walk
	Tessellation space
	Tessellation in post-projection space
	Problems with current approach
	Possible enhancements
	More speed optimizations
	Conclusion
	References
	Questions?

