Cross-Platform Development
using FX Composer 2.0

Chris Maughan - Kevin Bjorke
Alpha 4 - GDC 2006

Good afternoon & welcome.

Software

Overview & New
Features

Chris Maughan

My name is Chris Maughan & I'll be telling you about some of the principal features
and improvements we’ve made to FX Composer for version 2

Screenshot

Here’s an example image showing our mike character. You can see that there are
actually a couple of different render-to-texture full-screen effects being used here —
one window is using an corona effect, while another window is displaying an
explosion effect.

Check out what's going on in the texture panel too — the various stages of the
corona effect are being displayed and updated in real time and the effect animates,
letting you really get a clear look right down into the heart of how your render works

You can see — project explorer, textures, python scripting, the shader editor and the
properties.

Target Audience

Game Production Engine
Artists TDs Programmers

FX Composer 2 is designed from the outset as a PRODUCTION TOOL.

We see three different sorts of users — you yourself may fit into one, two, or all three
categories.

Those categories are game artists, production TDs, and core game-engine
programmers.

Importantly, FX Composer 2 doesn'’t just provide them with tools to do their own
work, it provides a common platform for all of these people to work together.

Why FX Composer 2 ?

® Draws things a DCC app can’t
® Shadows, full-screen effects
® New hardware features

® Fully customizable

® Plug-ins, Scripting, devices, and
GUI Layout
® Engine integration

® Shader profiling

® Using our own compiler
technology

FX Composer is designed with features for every kind of user.

First, it can make pictures that artists just can't get when they’re in a DCC app. DCC apps are very
capable but they're designed to be fast at their core strengths and they each have a fixed real-time
rendering architecture. FX Composer is designed specifically for managing shading, for handling
arbitrary render architectures. So that means that artists can directly visualize and tweak attributes of
their scenes that just aren’t visible in a DCC app. We'll expand on this further in a little while.

Second, FX Composer is customizable, scriptable, and .NET compliant. Whatever the production
environment, FX Composer is readily adapted to it. If your studio has custom data formats, monolithic
control applications, or any other tools based on ET or on Python or C# or other CLR-based
languages, those tools can interoperate easy with FX Composer.

Finally, FX Composer has an integrated shader profiler that lets game-engine programmers get right
in at the heart of efficiency and debugging issues, so they can squeeze every last nanosecond of
performance out of their titles.

FX Composer Introduction

® Major update from 1.x
® Reworked from the ground up
® Generalized rendering engine
® User interface improvements
® Plugin 10 —e.g. COLLADA, OBJ, ..
® Multiple device support - Cg, PS3, GLSL, etc...
® Scripting with IronPython.NET

We rebuilt it from scratch, to address the needs of developers using the current
version. After listening to feedback developers wanted tighter integration with their
pipelines, more customizability and cross platform support.

Rendering engine is one of the big changes. A generic, graph based, architecture.
Nodes and pins ad links. Very general for different cases.

Massively improved Ul. Undo/Redo means less annoying dialogs. Cleaner
approach to the whole thing.

IO is pluggable. We support what FXC1 did, but with collada as well

Devices. GL, etc.

Scripting through an .NET compliant language. We use IronPython.

Reworked design

® Now written in C#/.NET
® Easy to extend and integrate
® A hierarchical plugin system

® Completely extensible — plugins define layers of
behaviour

® SDK examples

® A graph system
® Manages component dependencies
® Used in the rendering engine

Almost 100% C#/.NET Add plugin system diagram.

Plugins define hierarchies of functionality. Entirely new features can be
implemented. For example, the scene plugin defines a scene graph, the scene
rendering plugin defines a scene graph renderer & idea of a device plugin.

Graph system is used to manage dependencies between engine components, and
extensively in the rendering

Rendering Engine ' |

® Extensible
® Plugin graph nodes can change rendering behaviour
® Custom graphs to match your game engine
® Several default graph nodes supplied — draw, clear, etc.
® COLLADA FX & SAS supported through the graph
® Layered effects just build bigger graphs...

The renderer is one of the major changes. The previous version of FX Composer
was basically a SAS renderer. This version uses a graph to evaluate the scene.
This graph is flexible enough that developers can extend it and it can support
existing concepts, such as SAS. You can build graphs through script to match your
rendering engine, for example.

DXSAS Sample — Edge Detect

Technique Main
<
string Script =
RenderColorTargetO=SceneTexture;
RenderDepthStencilTarget=DepthBuffer;
ClearSetColor=ClearColor;
ClearSetDepth=ClearDepth;
Clear=Color;
Clear=Depth;
ScriptExternal=color;
Pass=ImageProc;
>
Pass ImageProc
<
string Script = RenderColorTarget0=;
RenderDepthStencilTarget=;
Draw=Buffer;

Don’t worry about the syntax/details

Sets a couple targets

Clears them

ImageProc does the quad (Draw="Buffer”)

This is how a SAS full screen effect looks.

>

FX Composer 2 Graph

Edge Detect RT Texture Shader
(ColladaFX)
Edge Detect

& |nput Pin
Output Pin
? Flow Pin

Use the graph to do any sort of rendering. Extensible.

10

Top right is a combo. The others are individual effects.

‘posterize, hot
corona +

posterize’,
‘hotcorona’,
‘explode’

11

User Interface ' |

® All docking windows are plugins
® Can add menu items/toolbars to the application window
® VC2005 docking style

® Scripts can create menus &
toolbars

® Many new and enhanced
controls

® Full Undo/Redo

Note the nice 2005 style dock hints. Much easier to use with this and other
improvements such as undo/redo

12

Project Explorer o ox

i Filker ~

Project Explorer T Pt i
AP Asset
Bl Ol Scenes
B [Effects
= “I% phong_skin
L Effect Parameters
= emon_eye
Praject Explorer o 5 Effect Parameters
Filter = Multiple % phong_gurms
Scenes P Effect Parameters
et % phong_testh
[Effect Parameters
% durer
- [Effect Parameters
:; metalstool2. dae | G- Imported Effect Fies
eI e B¢ bumpreflect
=R gimﬂ Effects P Effect Paramelers
=% Root Mode & B[fimparted Effect Filest
El-a:g Mode Materials : = bumpreflect.cafs
= B[taterials
= (g Teapot Shape B2 phong skin
@ Teapat L Material Parameters
o ig® Indexer iy phong_skin
¢ phong_teeth
g’ Tesselator Material Parameters
% phong_teeth
T =) urerll
ﬁ.\ Effect Parameters © L Material Parameters
e 4 % durer
5 deman_eye emon_eve
[Effect Parameters Materizl Parameters
% demor_eye

zzet

4
& phong_gums
L Material Parameters
g phong_gums
B bumpreflectaterial
L[5 Matenal Parameters
B bumpreflact

The project explorer is a hierarchical look at your entire Collada project area....

A project can contain multiple scenes, which is good if you’re working on different
parts of the same game — say, different levels, or collections of different characters,
vehicles, and so forth. This project has two scenes

In the larger view, note the distinctions COLLADA has between effects and
materials...a material USES an effect. If | have a model that uses both blue plastic
and red plastic, | only need ONE “plastic” effect — but | can have two different
materials, one red and one blue. Both of those materials call on the same
underlying effect, but each material has its own properties — color, obviously, but
any other properties too, such as choice of textures, choice of techniques, and so
forth.

In FX Composer 2 we don’t bind effects to models, we bind materials to models.

So, looking at these nodes, each one has its properties. We can see or edit the
properties of these nodes in the FX Composer Properties Pane.

13

Properties Panel

Froperties a3 =
El Material Parametess
base 2 [] 0.798429012298584, 0.80521702766418¢

Colors

[] 0.996626019477844 1. 0.854303002357: Edit
[100, 100. 100, 0 Button
1.83486

0.00825688

03125
Selection Decular pr 25
Slider Stroke Ang -42.1101
YWiewl=f 0.94345098733902. 0.237336993217468. -0.2
WorldlT<f 1.0.0.0.0.1.0.0.0.0.1.0.0.0.0.1
YWorldiewl 2 68534994125366, -0.784088015556335, 0.5
world<f 1.0.0.0,0.1.0.0.0.0.1.0,.0,0.0.1

You can see the properties of any node by selecting it in the project explorer and right-clicking
“Properties.” Materials also have a shortcut node called “parameters” that you can just double-click,
since editing parameters is the most-common operation for an FX Composer user.

For material parameters, as we see here, there are a few things I'd like you to notice.
First, one property is selected, because I've clicked on its name

Second, I've also clicked the little “edit” button that appears when sme properties are selected, and
that's caused...

...this slider to appear. The slider ranges and values can be set directly by the shader source itself.
We can slide-around the little gray pointer with the mouse to assign a value, or type-in a specific
number.

This little “Y” symbol means that this particular parameter is linkable — we can click on this and link it
appropriately to the values of some other node. In this case we can see it's a light position, and we
can link the value of this propert to any light that exists in the current scene. Then we're free to drag-
around the light or the shaded model and everything will just update auto-magically.

Finally, these little chips indicate a color. When we try to edit these, we’ll get the FX Composer color
picker....

14

HDR Color Picker & |

Hue/Sat i ol Intensity

Numeric

The color picker looks a lot like typical color pickers.

We have a Hue and Saturation wheel, and

An Intensity slider.

But notice that the intensity slider can go ABOVE ONE, because this is an HDR
color picker — that is, it has high dynamic range. So you can have colors brighter
than one.

If you know what that’s about, great. If not, I'll show you an example later. Just
consider over-bright colors as “over-exposed” and you’ll be on your way. But as |
said we’ll do that in a little while.

Finally, for greatest precision we can always just enter text in the numeric fields

15

Texture Explorer

Texture Explaorer

D30-HLSL | OGL-Cq PS3-Cg

Cubemap
Panorama

Let’s move to a different part of the Ul, the texture explorer. This window shows you
the textures currently in use — it will even do live updates for complex texture
effects.

I'll just mention one innovation here, because | think it's cool

The lower window is showing us a cube environment map — the display
automatically unwraps the display as a panorama, making it a lot easier to see.

And on that, um, slightly geeky note let’s look at some programmer parts to the Ul:

16

Material Editor [

= sampler2D NormalSampler = sampler state {
Texture = <normalllap;
MinFilter = LinearMipMapLinear:
MagFilter = Linear:
¥

Ty

texture envlMap : Environment <
string Resourcelame = "Defsult reflection.dds';

Syntax
Hilighting

= samplerCUBE EnvSanpler = sampler_state {
Texture = <ensMap>;
Line #'s MinFilter = LinearMipMapLinear;
MagFilter = Linear;
VrapS = ClampToEdge;
VWrapT = ClampToEdge;

Collapser EL L LR LTI EL L L LA T EL L AR P L PR B LI E S L L AT LB Rt
#¢ structures and shaders J/// 0 A SFFEEAESTTEE
FEEEFFFEFFSTT I TI T T E T I T FEFEFFFF A FFFFESTTT I EFETTIEETi i e i s

struct azv
A S

float4 Position - POSITION: //in object space
float? TexCoord : TEXCOORDO;
float3 Tangent : TEXCOORDE: // TAMGENT; f/ ATTRl4; // in object :
float3 Binormal - TEXCOORD?: // BINORMAL; /f ATTRIE; // in object
float3 Normal : MORMAL; //in ohject space

¥

struct vEf
=1
float4 Position : POSITION; //in projectiom space
float2 TexCoord : TEXCOORDO;
floatd TexCoordl : TEXCOORDL; //first row of che 3x3 cransform fiy

The material editor lets us get at the actual source code of any shader. It's a
modern, full-featured source editor, with highlighting, easy-to-follow line numbering,
collapsable code blocks, and so forth.

Each language definition is stored in a little XML file within the FX Composer install
tree, so new languages are easy to add, or you can tweak the existing ones around
if you’re so inclined.

The editor is also directly ties to the debug window, so if shader errors are found,
the debugger can jump you directly to the offending line.

17

Scripting and Debugging Panels & |

Log Debug Script

Output | Task Lisk Python|

IronPython 1.0.2208 (Beta) on .
2.0,30727.42

=»> Trom fxcapi dmport *
=rr Reset()

x> TP = Teapot()

2> Tp.ser_Mame('thingie")
=»> Translatef0,-1,0)
<FxModeCollection object at
Ox0000000000000026>

=rr Undol)

S

By default, the log, debugging, and scripting panels appear by default together at
the bottom of the window. All windows are drag and dockable, so if you debug a lot,
or script a lot, you can rearrange them to your fancy.

18

Drag and Drop Assignments

FX Composer lets us drag and drop both models and materials. We can drag effect
files directly from Windows Explorer — either cgfx format or COLLADA FX files —
directly onto any particular scene object. FX Composer will add these new effects to
the current project, and is smart enough to recurse through any sort of indirect
#include directives and so forth too.

The result will render and you’ll see the new effect and a new matching material
appear in the project explorer window.

OR, if you already have a material defined within your COLLADA project, you can
drag it from the project explorer into the scene view

19

Scene Viewer

Drag Indicator

. D3D-HLSL | OGL-Cg PS3-C
Manipulator = &

The scene window can display one or more views simultaneously, each with a
different camera or even a different rendering method.

We can tumble and drag the camera by pressing the ALT or CTRL keys and zoom
by rolling the mouse wheel.

We can also select objects and move them around by using manipulators — here’s a
rotate manipulator, it has three colored axes and in this picture one of them is
yellow, which means it's being rotated right when the screenshot was snapped.

The manipulators have shortcuts, QWER across the top of the keyboard, Q for
select, then W E R for translate rotate and scale, just like Maya. This will be in the
notes for this talk too.

This second screenshot shows the name of a material — what we’re seeing is a
shapshot of FX Composer’s drag-and-drop process.

20

® COLLADA is an open asset exchange database
format (.dae)

® COLLADA is governed by the Khronos
Group
® Includes numerous ISVs and IHVs
® Mature DCC plugins for extensive support

® FX Composer 2 can use COLLADA for asset
interchange
® Used to load scene file
® Operates on effects and materials currently
® Other data in the file is untouched
® Other file formats supported

COLLADA....

FX Composer 2 supports the COLLADA file format. What is it? We had our own XML project format,
nobody liked it.

“COLLADA is an open asset exchange database format” okay that's a mouthful. What it means is
that COLLADA can be used by multiple programs to exchange assets — models, shaders, scenes,
textures, even animation and physics.

COLLADA is a shared standard, belonging to no one company. The Khronos Group defines
COLLADA, manages and licenses it, and no individual software or hardware vendor can arbitrarily
tweak it or change it. This is the way you want your standards to work.

FX Composer 2 can load a COLLAA file from most any source, ad edit it — but FX Composer 2 ONLY
edits the shading-related parts of that COLLADA file — everything else passes through without
change. FX Composer 2 isn’t an animation program or a paint tool, it's a real-time shading tool.

21

Devices

® Support Cg, Direct3D,
PS3, GL-ES, GLSL,
etc...

® Simultaneous rendering
on the same model

® COLLADA file contains
different ‘profiles’ in the
same effect
® Scene shown was
imported from XSI, then
Direct3D added

Big new feature for FXC2 — Not just D3D anymore.

22

Scripting

® Plugin provided that enables scripting with
IronPython.NET

® Any .NET language could be used though

® Scripting is integrated completely into the engine
® . .because it talks to the engine the same way as any
other plugin
® Complete control
® You can shoot yourself in the foot if you want to...
® _.with extreme prejudice

Scripting through Python is powerful enough to get things done, with care.

23

>

Production Use &

Demonstration

Kevin Bjorke

Okay, hello — my name is Kevin Bjorke & I'm here to talk a little about FX Composer
and its place in production processes, both in the abstract and also in a minute we’'ll
show you the program in action.

24

Simple FX Composer 2 Pipeline & |

Create scene

DCC Application . . .
Assign materials to objects

Modify shader techniques
Tweak shader properties

| COLLADA)

Here’s a quick slide showing the simplest sort of use of FX Composer, where data
has come from a DCC app like XSl as a Collada file, it's tweaked by FX Composer
and a modified COLLADA file moves on downstream.

FX Composer isn't actually fully constrained to COLLADA usage — you can import
models in other standard formats like OBJ or .X, or roll your own reader quite easily
— FX Composer will write-out a new COLLADA file as a result but the portions of
your scene that are stored in other formats will just be mentioned as references, to
keep the core elements of your production pipeline consistent.

But real production rarely travels perfectly 100% downstream, right?

25

Plays Well With Others

Alias Maya 7 ‘ I 4

Autodesk M+E
FX Composer 2.0 «——
3ds max 8

Avid|Softimage
XS15.0

COLLADA can move models, rigging, animation, and more freely between
applications, and FX Composer can play very well in that field — this is important
because it lets the program be part of whatever sorts of production approval loops,
stages, and production stages your studio may have in place. And it's really quite
agnostic about which tools you use external to itself.

26

Mix & Match APIs

fx fx
.cgfx .cgfx
FX Composer 2.0
.dae Cg .dae Cg
.dae GLSL .dae GLSL

.dae HLSL | COLLADA .dae HLSL

e J
k ’
B -

Here’s just a quick chart, we won't dwell on it, but it shows how the program is
happy in production environments of any sort because it can deal with any API or
combination of APIs.

Our goal isn’'t to make a cool tool for creating NVIDIA demos, but to give developers
and artist a genuinely useful channel to create, view, and manage shading in real,
shipping games.

o Edtor 9 b x| [P
264 (Bezal om .NET 2.3.50727.42 ElHodeiopetiios:
ObjectSsale 1.1.1
Object Rotaton 0.0, 0. 1
Object Tandaticr 0,0, 0
Lookat matrix 1.0,0,0.0, 1,0,

2%

(o8 Camsra + Eé o B

€ UL | e oalig 4 b oK

GameDevelopers
Conference

So here’s FX Composer in a role you probably haven't seen before!

The background window looks pretty typical — the teapot means it's an empty scene
— but the foreground window is running a complex, XAML-based, Windows Vista-
ready, database-connected animated Point-of-Sale kiosk Ul, created and driven
entirely by the Python scripting engine.

Yes, you can edit and view shaders from your favorite DCC application while
shopping.

Okay, a LITTLE disingeuous, but the truth is that FX Composer *is* indeed running
this additional sales-kiosk application via the IronPython scripting extensions. The
point here isn’t to sell MP3 players or SD cards, but to show off the ability of
IronPython and FX Composer to integrate and extend across a variety of different
parts of your workspace, and to have the ability to provide custom Ul elements and
operations as needed by whatever your own studio environment might need. You
can use .NET, you can open sockkets and talk to your asset database, the works.

As for Point of Sale displays, I'm not saying that you SHOULD....

28

lIronPython

® “Iron” =“1 Run On .Net”

http://workspace.gotdotnet.com/ironpython

This acronym is NOT MY FAULT

But it is a pretty swell version of Python, very fast and full-featured and well-
connected. The picture we just looked at was based on a XAML file created in
Microsoft Expression Interactive Designer — you can use any XAML-based editor to
create Uls, or code them up arbitrarily, or just use the Python window in a simple
text-based form.

The Python editor itself is pretty sweet too, with keyword and class-member
completion and so forth, making it relatively easy to navigate through FX
Composer’s hierarchies. The installer includes the standard Python 2.4 libraries,
and you'll find that with VERY few exceptions, you can use any of them, or the .NET
equivalents, pretty interchangeably.

If you're already a Python hacker, or you'd like to know moer about python,
definitely check out the IronPython web site, you can get a standalone edition as
well. We've already been coding up ideas for tools and extensions to FX Composer
for running in Pythin, for example, | translated the CgFX shader creator, previously
written in Mel for use in Maya, into a Python class for use in both XSI and FX
Composer — took just a couple of hours and now it's useful and general for ever.

29

Integrated Shader Profiling

® Convenient tweak-and-profile workflow to tune
shaders

® Integrated NVShaderPerf 2.0 gives access to:
® Performance across multiple GPUs and drivers
® Assembly output
® Vertex and pixel throughput
® Cycle count
® Register usage

® Coming Soon

This feature is crucial for production TDs and engine programmers and if you're
used to it from FX Composer 1.x you know what | mean. Again, | won’t dwell on this
slide since Jeff Kiel gave a complete talk on NVShaderPerf just a few minutes ago
(also available on the NVIDA website! http://developer.nvidia.com/), but an
integrated panel for shader perf analysis is a key part of why FX Composer is
useful, and it's something that is a unique part of pipelines that include FX
Compooser 2

30

Froperties
Lightd P
o etmdure/ Fuce. catast § Lgran
Fach to Tervucer mod shadere|| Lo 0Enginess
Laghit Pew
Lght 1
Light 1 Brightrmres
Specus Dighiress

5 Flinct Psrrmioes
=) (o beportad EHact Filas

Fisde i compde P51}

Let's take a look at bringing up Mike in Maya and FX Composer 2

= 37, 160, 14
(mENETAT]
15000

2
M uor, o oor
1

g ek Hegd Dol
FACamposes Scenn Libs

Sl 20

v Wt Hs D]
FPHComposes Seann Libi
(]

{image Jateth Height Depin]
FACompozes Seene L

31

Fie Ede Moddy Cresn Owplyy Wedow Ughtrgitudeg Testarg R Toon Bart ifects Wee el
Jresemy R EE SRR+ L2 eH Y07 BR|VLN RO | D0 |EEE | BEH
3 Basmhes o | Livellooks | Pobperblodeirg | Sheil | Sheil? | Sheeton

.:aﬁ‘n}u g. Eﬁ,?’ﬁ' i ‘-&‘:& * f&'%&i L'..'n

Ve Shadeg Littng Sors Panss | View Sheden Uit Shom Panth FET 40~

Charnels Cbiect
MMM bndi¥_gedi_c -~
Traralste X 20,099
Traralste ¥ -10.37%
Tiarulale 2 44449
Plotate 40465
Rotata ' <105 &3
Rotale 2 79896
SetchEnstie on

"‘|Z|-| x|

C_
x

3
“
L
@
-3
A

ouTPUTS

 Depley T Rendel

Layers Outiorm_Helo

=
I pasted_EXPOATE &

pasted_bubba

pasted__workshop

pasted__workshop

pasted_bedroom

scenef_okdComp.

akdComputer

View S Lighting
e o

6 SRR

“[ooe
[

" Select Taok sthect an chiect

evelopers

Mike was animated in Maya originally, but the steps here would be much the same
in any other DCC application

Fle Ede Modfy Creste Owply Widow Ughtrgfihadeg Tedtarg Hende Toon Pant fifecs Har Help

fresems R EMEHERBR|Z+ L4208 Y07 8|V 2|00 E|ESEE|wBEE

3 Bashes CoFY | Lovelloos | Pobonblodelrg | Shell | Shell? | Sheiton i §
ks EE RN EERE |

view wden Ughtng Son Paeke | ven Shadeg Lgttng Shom Pansks I-Ez 40~

= - = ~ y Charnels_Clect
MR _|_hndi]_geil_c <
Traratste = 20099
Tianlste Y 10375
Tiarnlsle 2 44 489
Potate’ AD4BS
Rowste v 5438
Fotsle Z THESE
ShechEnstle en

“
L
@
-3
«

View o Lighting Sow Panch | View Shadig Lighting

- e o)

“[ooe

Select Took select an cbiect

...Shaded...

Fle Edt Mudfy Crestn Doplyy Wedow LghirgiSwdeg Tesung Reder Toon PantEffects Har Hep

Jreotems P EMEHERBE|(Z+L 20507 80|V SO H|EBE|w BEE
: Bamher CoPA | LevelToos | PobgenModeing | Shein | Shetz | Sketeron o
ot cove o S o O O 8 2 3 0 S

Ve Stucheyy Lapiang Suw Baiek

o
3
“
L
@
-3
A
=]
B
2
=

= =
AL |1m I R T I NI

W [@w w [ethesmia -0 B

| 1=

GameDevelopers
Conference

Mike was originally made and textured within Maya, so he has Maya materials but
no realtime shading. So we’re going to export him and assign new materials in FX
Composer

(Quick aside: the shaders we will use in the sample were actually generated to
match Maya’s! The Mel scripts for CgFX, available for some time in the CgFX
toolbar, have been ported to Python & were used to generate the appropriate
templates, before being further tweaked by hand.)

34

m-;-}p‘-ﬂ”a\'br{:+{,z.u'~9? BR|{URN S O|(ar Y| EES| B

Bramhes TP | LavelToots | Pobgonblodeing | Sheln | Sherd

Ldud’hgu’.;& X gr ncn *ém

EB-owd e

!IH_IHCSLI:_SDW‘E
INPUTS

noene?h_bubba
suaneZh_pasted__puly

W cased_EXPORTE = |
pasted_buibbs
pasted_werkshop
pasted_werkehop
pasted_bedroom
s oot

=
=
=
&
=
&l
if=
=
E]
]
&l
1=
1=

. [l R]

| i Innl_lm Y el B
[mm W w fethesmin -0 B

B== : =]

deelu velopers
Canference

| just want to shade Mike so I've made a set containing just the parts | want to
export

e fEERRRE |+ L2088 07 aR|(TER S O(AD L |BEBEB| - ELE

Eamhes CoP | LevelTook | Pobgorbiodeing | Shei | Shei? | Skeleton

Fin Ty BTN -]

& Diedinit Pl Estoreatrs:

Rederence Dpéions

Irschude: ptans

b
©
o
B
ﬁ

File: Type: Spocilic Optens
= | Ginrmal Expont Dptives

_MMM_RBUCKLE_SHAPE
INPUTS
sconelh_bubba
wenrhi_pasbod_poly
seeneb_parted__poly

spley (Flonder

EPOHTI &

+| Fiter export
= | ¥ital Options

¥ Esgent Flrdsterces

» | Camera Options

Liport Selection

10 | 120 1mem
- | I.! e

[roo [0 [2oa00

tediss
e _ ek shon
pasted
asted_leckcom
6 oot
okComgutn
6oy
revonputst

—_—

salpa| | o P B] pEr

w NoChustlerSel w0 B

el

emerTirgest 1

GameDevelopers

...and | “export” to COLLADA the same as | might to any other format.

So let’s switch to FX Composer

36

 NYIDWA FX Composer 2 - Project: defaull - Scene: original-mike1 3mar. dae

™ o4 Tank u.l] @
N [Fie

I 1o compde P50 by shader. Make sue th CProgram Fled'N
o 3 shader [

compln P53 WP
Fabed 1o compde P50 binasy shader. Make sse th.. C\Program Files'\.
o comgain P53 by shader Miske suee th . C"Piogam P\l
1o compde P51 binary thader. Make swe th.. C'\Program Flea'N.

GameDevelopers

Conferen:

| can just drag and drop my new .DAE COLLADA file onto the FX Composer scene
window and Mike will load.

Wireframe means materials are assigned to those surfaces, but those materials
have no volid effects for the current profile (which in this illustration is “PS3-Cg”)

We can similarly drag effect file from the Windows Explorer onto surfaces, where
they’ll be automatically assigned, or into the blank areas or the Project Explorer,
where they’ll be defined as effects (and then we can assign them to materials as a
second step — select the material and right-click to see “Assign Effect....”)

37

[37160, 194
L] 1. 0575 o
[X4 19, s, 025
= o

[y 4.1
0.330541657

GameDevelopers

Almost all parts assigned.... You may have to roll-around the camera for small
parts, or just use the Project Explorer to get at the materials and effects by name

38

File Edt Wiew Buld Lbrary Tools ‘Windo
W Material Editar |

dxvest.fy |

€ 03D-HSL | e 0l 4 bk X FF §Td:
FF Builc

#define
#define
#define
£ gdefi
£ gdefi
£ gdefdi

#define
#define

#include|

I-; Dutput I-; Ta

! | Description

Failed ta compile
Failed ta compile
Failed ta compile
Failed ta compile
Failed ta compile

Failed ta compile

|8l seeneE_ms_buckle
Iﬂ scene2b_ms_jetpack
|8l seeneB_ms_helmet
scene2B_ms_rings
scene2f_ms_straps
scene2B_ms_shoe_right

=
ladl
|8l ms_eye_right
ladl
=

5]

3]

& scene2B_ms_dlove_right
& scens2B_ms_pants_right
Iﬂ scene2B_ms_arm_right
,ﬂ scene2f_ms_testh lower
Iﬂ scene2b_ms_head
|8l seeneZB ms dlove left
Iﬂ scene2b_ms_shoe_left
B [scene28 ms vest
[Material Parameters
B 3 vest
&= PL-OGL Device
A P53 Device
= €2 PC-DID Device
Ot main
Ot debiug_uv
@ ws debug_nomals
O st debug_viewWse
Qs debug_ Lightvec
Qs flat
QOus B
Iﬂ scene2b_ms_buckles
|8 me_eve left

Filter ~

|
|
|
|
|
|
£

Note the debug techniques... optional but handy

Properties

Scene o
|8l camera ~ @'@‘ o B

€2 DID-HLSL | @~ 0GL-C; 4 b %

GameDevelopers
Confe e

39

== Project Explarer

File Edit Wiew Build Libary
Texturs Explrer 27 g %2 ms_eye_lef 4 b x |[Froparties
= | “i2 ms_eye_right
i scene?B_ms_tangue
%g sceneB_ms_chirt
ﬁ scene2f_ms_arm_left
ﬁ scene2f_ms_arm_right
ﬁ scene2f_ms_alove_lsft
“% scene2B_ms_hand_left
\'ig scene2f_ms_glove_right
“# scene2B ms_belt
T % soene25_ms_shos_left
sceneZf_ms_shoe_right
scene2fi_ms_rngs

%
%
“i% scene2B_ms_vest
i
i

€ 0iDHEL e o 4k x

5
5
5

scene2B_ms_pants_left
scene2B_ms_pants_right o
A TR ®
“ig scene2b_ms_hand_right e &

%g scene25_ms_head il Camers - “:" =

3[3 scene2f_ms_collar ca DAD-HLSL | &= oclece 4 b %
3[3 scene2f_ms_buckles
3[3 scene2f_ms_stiaps
8

B HH

L2

‘ Import Effect File. ..

Remove Effect

(ngnge?

HHEHE

7] Properties

&

Ly debug_uv
Cg debug_nomals
Ly debug_viesvec
Cg debug_Ligntvec
Ty flat
® CaR

“ pantsleft

“g amleft

g tare

“Z pet

g hand-left

GameDevelopers
Conferen

Assigning extra effects — switching to DirectX view, we can see that the model is still
in red wireframe — no effect techniques are defined for THIS profile. So let's add
some.

I've popped-free the Project Explorer pane so | have more working space, and | can
add additional effect files (CgFX or HLSL FX) so that the effect can be valid in
multiple profiles.

40

Project Explorer

TeC h n I q u e'a- Ram a 1 [scene26_ms_testh_lower

|4l scene26_ms_head

Filker ~

M [scene?6_ms_glove left
B [scene?6_ms_shos_lsft
= | scens2B_ms_vest
[Material Parameters
B @ vest
® Each material will have Qfisrae
. . O Cg) debug_viewec
a list of techniques for O i
each render device §
(here they are all the §E: e
] g debug_LightVec
same, but it’s not Ot
required!) and all will e
share the material - i

O 'ty debug Lightvec

parameters oo

Ty main
Qg debug_uw
O 5 debug_nomals
O L5 debug_vieweo
Q5 debug_Lightvec
QL5 flat
Qe
Bl €2 PC-DID Device
@ s main
Omst debug_uv
st debug_nomats

o]
Ot debug_viewwes
Ot debug_Lighti'ec

Omst flat

Oms B
B[] scene2B_ms_buckles
[l ms_eye_left

Here’s a closeup of a fully populated scene valid for all current profiles.

».a- Ede Moddy Creste Owplyy wisdow Ughtingihadey Tedhurg Rendee Toon Pard Effects Har Help
fredem N E@EHERBE|(E+L2eH Y0 T ARV OO |BEBB|w-ERF
i n

Bashes o2 | Livellooks | Pobporbodeing | Shet | Shei2 | Skeioton

: .::é-lnn!h- ﬁ Iﬁirﬁ i ‘-g}:ﬁ * é?ﬂ k:if ';-.Ie

Ve Shadeg Lghtng Shom Pansl | ew Shadg Lighting Shom Pandls

vorm
Edgee
Facoer
Trim
wm

[
G
e
<
L)
o
B
A

Fo |

Z R =

m
Im Innl_jm Im Im Vg ree gt | | | P]| 2R e
[ELZ o000 w HoChusisSel 0 @

1 -

GameDevelopers
Chnfarence

But instead of looking at slides, let’s do this again right here!

Mike has lots of parts, so for the sake of a quick demo I'm going to pick a frame
where his mouth is closed (so | can ignore his teeth and tongue) and just export his
head, eyes, and helmet.

Let’s load that result and try it out!

42

DO
Try This

At HoOme

Let’s start with a fresh FX Composer 2, our fresh Mike head model (“MikeBust”) and
begin....

43

Demo — See Notes for All the Steps!

@ NVIDIA FX Composer 2 - Project: default - Scene: mikebust-060317-hlsl. dae E@E
File Edit Wiew Build Lbrary Tools Window Help

Priject Explorer B X WE Material Editor Python | 4 b ®% Properties_ : 7 X
B Fiter ~ " IFxscenattem’ . E Material Parameters: Matesal

B % deface A || IFxscenechserver’, b?Ckg’Dund Il 0.000

7 Effect P IFxSpaceTransform’, Pixels Steps 1.77083325
'IFxstream', 'IFxStreamgundle’, Thieshhold 0.2

B [Includer ‘Library', ‘Lightcollection',

1 ‘Moderlag’,

‘programZollection’,

‘ProgramInstancecollection’,

'services', 'streamcollection’,

__builtins_", '_dict__'

Cgi debug 1 '__name__']

Cg debug_r e i

C3 debug dir (FxComposer. scene, Fxviewport

Cg debug_| v

['Eguals’, 'GetHashcode',
< ¥ ‘GetType', 'Height', 'maxz’,
‘minz’, 'Tostring', 'width',
'X', 'Y‘, Scene
B _Fxviewport_Finalize' i @
F><v1ewp0rt_l\flemberw1sec'l one' &l Camera & o E
€ oao-He 4k % (' __class__ S
__repr__]
>

Texture Explorer & %

ug Output| Wl Task List
|Build

Compiling Device effect...
Face.cgfx

Building Material: Face
Compiling Device effect...
Face.cafs

<

PART ONE

1. Start FX Composer 2

2. Resize so that we can see Windows Explorer windows, too

3. Drag-n-drop mikebust.dae into TEXT window — see syntax highlights etc — close
it (just looking)

4. Drag MikeBust dae again — onto the scene pane. It will load & show red
wireframes

5. Select different render devices — settle on DirectX

6. Find fx Shaders in the Windows explorer — dxFace fdxEye-Left dxHelmet

7. Drag dxHelmet onto helmet

8. Drag dxFace onto face

9. Eyes are tiny, so drag onto blank area or into the Project Explorer pane

10.Look at proj explorer — see the effects and materials

11. Select eyes material, and Assign “dxEye-left” effect

12.Rotate around in the scene view by dragging while hold-down “Alt”
13.1n and out zoom with the mouse scroll wheel

14.Make scene pane big... double-click on the title bar and then resize.

DoubleOclick agaion to put it back & vice versa

15.Zoom extents on eyes — click on an eye to select, then press zoom extents on

the scen pane toolbar

16.Zoom extents on the whole scene

44

Demo — See Notes for All the Steps!

@ NVIDIA FX Composer 2 - Project: default - Scene: mikebust-060317-hlsl. dae g@@

File Edit Wiew Build Lbrary Tools Window Help

Project Explorer a4 =

iy Filter =

= “if deface A
[Effect P

E [Includec

Cg debug_t
Cg debug_t
Cg debug
Cg debug_| v
< ¥

Texture Explorer & %
B
€ Dao-HLsl 4 b %

PART TWO

©oOoNOOR®ODNPE

“point light”

@3 Material Editor Pythnn| 4 b x Propertles_ _r‘l b
TFxsceneitem’, E Material Parameters: Matenal
'IFxscenechserver’', background [l 0.0,0.0
'IFxSpaceTransform’, Pixels Steps 1.77083325
'IFxstream', 'IFxStreamgundle’, Thieshhold 0.2
‘Library', ‘Lightcollection',

‘Moderlag’,

‘programZollection’,

‘ProgramInstancecollection’,

'services', 'streamcollection’,

__builtins_", '_dict__'

__name__"]
>
dir (FxComposer. scene, Fxviewport

['Eguals’, 'GetHashcode',

‘GetType', 'Height', 'mMaxz',

‘minz’, 'Tostring', 'width',

RITRAT Scene
_Fxviewport_Finalize' il @
F><v1ewp0rt_l\flemberw1sec'l one’ &l camera oo E

__class__ _init__
__repr__]
>>>

ug Output| Wl Task List
|Build

Compiling Device effect...
Face.cgfx

Building Material: Face
Compiling Device effect...
Face.cafs

<

Select the face in the scene pane, and zoom on it

Look at assigned techniques for this in the Project Exlorer
Show debug techniques by clicking the radio buttons.

Go back to “main” technique

Select material parameters

Collapse textures in the properties pane

Roll bump and sub rolloff sliders

Change subcutaneous color by clicking the color and then the edit button
Zoom back out in the scene pane. WAY out.
10 Tools->create point light. New Ilght is already the selected object
11.Drag it around near mike — press “w
12. Materials properties on “Face”

13.Connect each material to this light
14.Wow bright! Move light around until it's a good brightness

w” to get the move manipulator
— click the “lightO pos” edit button and assign to

45

Demo — See Notes for All the Steps!

@ NVIDIA FX Composer 2 - Project: default - Scene: mikebust-060317-hlsl. dae g@@
File Edit Wiew Build Lbrary Tools Window Help

Project Explorer 1 X WF Material Editor @) Pythnn| 4 b ®% Properties_ _l}l kS
& Fiter = | M TFwscanertem’ . = E Material Parameters: Matesal

B % deface A |'IFxscenechserver', b?Ckg’Dund Il 0.000

7 Effect P 'IFxSpaceTransform’, Pixels Steps 1.77083325
'IFxstream', 'IFxStreamgundle’, Thieshhold 0.2

B [Includer ‘Library', ‘Lightcollection',
=] Fac 'ModeFlag’,

‘programZollection’,

‘ProgramInstancecollection’,

'services', 'streamcollection’,

' builtins__', ' _dict__',

Cgi debug 1 '__name__']

Cg debug_r > i

C3 debug dir (FxComposer. scene, Fxviewport

Cg main

£5 debug L¥ |7+ £0ials?, GetHashoode',

< ¥ ‘GetType', 'Height', 'maxz’,

‘minz’, 'Tostring', 'width',

0 C AP Scene

i p ‘_Fxviewport_Finalize', 3 il @
'_Fxviewport_MemberwiseClone', L&l camera o
€ oao-He 4 e % (' __class__', " _init__',

'_repr__']

>

Texture Explorer & %

ug Output| Wl Task List
|Build

Compiling Device effect...
Face.cgfx

Building Material: Face
Compiling Device effect...
Face.cafs

<

PART THREE

©oNOoO OGN PR

12.
13.

14.

15.

Select dxface effect in the project explorer, and right-click for “add effect file”

Import face.cgfx — give it a second or two to compile

Look at new list of files under this effect

Double-click file — text editor appears — note hilighting etc

Switch to the head material — hey we have new techniques! Note properties are already set!
Switch to PC-OGL and PS3 views to see what'’s defined and what's not

Back to face effect

Convert face.cgfx to colladafx — select the cgfx and right click “convert to COLLADA FX...”

Note that imported effect go smaller, imported shader grew, and effects ar enow managed by
collada

. Peel-off ps3 pane as its own window, note dx is still rendering!
11.

Assign other ogl effects just as we did for “face” — each window can have a different technique
selected

Select the helmet

Drag python window to main pane - watch how pressing [tab] can help you when you type:
from Fxcapi import *

Tra[tab]nslate(0,2,0)

Undo(Q)

import FX Composer.Scene

dir(FXCom[tab]poser.Sce[tab]ene)

Drag-on post_kuwahara.fx (or any other HLSL full-screen effect) onto DX window — cool huh?
Note the new material has a checkbox to enable/disabble it

Keep screwing around! Go crazy layering effects and trying things.

46

The Source for_ -
GPU Programming

developer.nvidia.com

Latest News

Developer Events Calendar
Technical Documentation
Conference Presentations

GPU Programming Guide
Powerful Tools, SDKs and more ...

Join our FREE registered developer program for early
access to NVIDIA drivers, cutting edge toolsyonline
support forums, and more.

developer.nvidia

oIA

Thanks for coming to see this new tool!

Be sure to contact us for any ideas, schedules, and needs you might have.

a7

