
1

WhenWhen
Shaders &Shaders &
TexturesTextures
CollideCollide

Kevin BjorkeKevin Bjorke
NVIDIA CorporationNVIDIA Corporation

Hello, I’m Kevin Bjorke from the NVIDIA Corporation Developer Content 
Group, and this talk is called: WHEN SHADERS AND TEXTURES 
COLLIDE.



2

Everybody Wants More

Everyone here know that games, schedules, budgets, and complexity have 
been continuing to grow rapidly. The picture here is of a baroque church, 
whose complexity reminded me of the level that games are already
surpassing.



3

Everybody Wants More

…and Moore’s Law 
can’t keep up

The demands of producers and audiences for sophisticated and expressive 
visuals are outstripping Moore's law -- most games are already CPU-bound 
and are likely to continue this trend. One way to combat this, to add visual 
excitement to games, is to capitalize on the other resources available in the 
users PC and in next-generation consoles. The GPU can provide 
considerable extra power, and since GPUs are accelerating their abilities 
faster than CPUs, this trend is only going to continue.

Some of you may have seen some of the unusual ways to do this, particular 
the Havok FX demos of GPU-powered physics, that adds all kinds of 
complexity without impacting the CPU rate or gameplay.

Effective shading and texture, which leverages the artistic potentials of the 
GPU, offer a continuing opportunity to enhance visual richness without 
bogging-down gameplay speed on both PCs and next-generation consoles. 
Currently GPU power is scaling faster than CPU power, and even faster than 
the software itself! So the opportunities are good and promise to only 
improve over time.



4

Next Gen, New Challenges

“If you think you are good enough you 
have just started your decline.”
Simply layering-on more lights or per-
pixel lighting doesn’t automatically
enhance game play
What is “Next-Gen Done Right”?

http://developer.nvidia.com

This intermediate-level talk focuses on texturing and shading, especially for 
artists and programmers who are looking to expand their possibilities in next-
gen consoles, which are inheriting techniques and ideas pioneered by PC 
games. The intent is to introduce some new ideas and also to help you get 
the game assets you may already be working on to look their absolute best.

This presentation provides texture painters, artists, and programmers with 
key insights on how their tasks interact, so that artists can better understand 
what does and doesn't work best with shading while shader writers 
understand how to provide optimal controls and visual power to the artists 
who use their shaders, along with ideas and tools for both kinds of game-
creators to better understand the power inherent in modern shading. 
Attendees will be exposed to novel shading algorithms, innovative use of 
texturing, and real-world production examples showing how existing artwork 
can be supercharged through savvy shading.

There will be a couple of demos during the talk, either using Adobe 
Photoshop or NVIDIA FX Composer – we’ll be using the current release of 
FX Composer and all of the example code will be available on the NVIDIA 
developer web site shortly after GDC, if it’s not already there, available to 
anyone without the hassle of signing an NDA.



5

Painters & Hackers

“Art does not reproduce 
the visible;

it makes things
visible”
– Paul Klee

New Harmony, 1936

Painting and hacking are two different ways of understanding the world and 
expressing ideas about it. I love this quote by Paul Klee – Klee was an early 
20th Century painter, and a teacher at the Bauhaus design school in 
Germany. If you get a chance to drive over to San Francisco during GDC, 
you’ll find that the SF MOMA has a room dedicated to nothing but rotating 
Klee exhibits.

I think this short quote really gets at a lot of what videogame art needs to 
accomplish in terms of not simply creating copies of realistic worlds, but of 
creating expressive, fun environments for playing games.

These aren’t the same thing!

At the same time….



6

Painters & Hackers

“Art does not reproduce 
the visible;

it makes things
visible”
– Paul Klee

New Harmony, 1936

“A videogame is not Art”
– Hideo Kojima

Kojima-san is dead-on. Videogames are more than art, more than 
programming, more than marketing. They’re something new and constantly 
expanding and made by team effort.

So let’s think quickly about painting and hacking.



7

Anything Can Be Painted

Painting is direct
Painting can influence programs, but in 
hidden ways that may be difficult to 
visualize
Downside: Scales Poorly

Painting is direct. SHOW ME.

Painters are often aware that textures can influence shading in hidden ways, 
but it’s often hard to visualise. Direct feedback on the image is best.



8

Anything Can Be Programmed

Programming is indirect
Imagery is often the result of abstract 
ideas, with little direct control
Downside: programmer art

Programming is all hidden. Shader writers code against notions of how 
optics and physics work, or against some imagined set of rules, to create 
fast complex imagery. The downside is usually that process gets in front of 
content and we can be in danger of seeing “programmer art” like the 
Mandelbrot set here.



9

Great Technical Artists

Great technical artists are both hackers and painters, or better yet teams of 
painters and hackers.

I love this drawing on the left, with the little embryonic baby – you can see 
the technical understanding and imagination, and the person who made this 
was a bit paranoid maybe, since he wrote all his notes in reverse so no one 
else can read them – the drawing is by Leonardo Davinci, probably the ultra 
template for a technical artist. The image below is from another famous 
technical artist, Albrecht Durer, who not only invented his own means of 
drawing and shading but also the commercial art house and the corporate 
logo.

Both of them hit the magic balance between art and technique.



10

Shaping the Subjective 
Experience Every pixel has 

the potential and 
the obligation to 
be a deliberate 
choice.

© Epic Games

So let’s talk about textures, and I’m going to start by discussing a topic that 
continues to confuse even experienced developers of PC games and next-
gen titles:



11

Why We MIP

MIP Maps. PC games have used MIP maps more in the past, due to the bigger memory 
footprints, but new consoles change that consideration. Everyone, regardless of their titles, 
should know how MIP maps work – even if your MIP processes are all automated parts of 
the nightly build.

If you don’t know what MIP mapping is already, you’re about to. Savvy management of MIP 
maps is a crucial performace issue for PC games and next-generation consoles. When a 
texture has MIP maps, it means that there’s a chain of ever-smaller version of that texture, 
and the GPU can call on the correct MIP level as appropriate for each rendered pixel so that 
the size of the texture can be smoothly and quickly adjusted regardless of changes in view 
angle and perspective.

Grabbing textures from MIP maps is generally faster for the GPU than having to filter them 
on the fly, and often the API can just take your high-res image and generate the MIPs for 
you at run time. Often, that’s good enough. But we can also make our MIP maps in advance, 
saved on disk, which will save us load time and give us a few extra opportunities to control 
our art process.

We’ll talk about tools for this in a little bit, but for now let’s just talk about ideas.…



12

Why We MIP

…

Controlling your MIP maps can let you manage which details are crucial in your textures and 
models, and which are not. Understanding MIPs can also help you get a handle on what 
sorts of texture sizes are best you’re your game. And knowing what’s important, and how 
detailed it needs to be, can help you as a texture artist so that you only spend your time 
painting what you’ll really see, and not wasting your time on stuff that will get lost in the final 
render.

There’s a very common scenario, I’ve seen it occur over and over – a texture painter makes 
a fantastic character face, renders it onto their model and shows it at art review. It’s really 
great, expressive, and when it gets into a running game engine it just looks like mush. Why 
does this happen?

Usually, I happens because the art review rendered the face 200 pixels high, and in-game 
that face is never bigger than 30 pixels high.



13

Stage Makeup = LOD

Makeup example courtesy
Tara Maginnis,
http://www.costumes.org

Makeup artists have been dealing with this issue for as long as… as long as 
there have been makeup artists.

Here’s a little view of an actress wearing “nice old lady” makeup – it’s been 
deliberately designed to be visible and expressive when seen from a 
distance of anywhere from 40 to 200 feet away, but NOT CLOSER – so the 
guy in seat 32M can see very well. 



14

Stage Makeup = LOD

Makeup example courtesy
Tara Maginnis,
http://www.costumes.org

When we look at it up close, it may seem more like a Skeletor’s sister than 
grandma – the LOD for this makeup is only appropriate when seen from far 
away, and it’s been prepared according to well-known formulas.

If the actress had been wearing makeup appropriate for a closeup in a 
movie, she’d look a lot more “normal” at typical conversational distances –
but when seen on stage from row M, her face would lose a lot of its 
expressive power and character.

In gaming, the low-res view can sometimes be more important than high-res 
– think about the TYPICAL sizes of characters on-screen during game play, 
and make sure that the MIP levels at those sizes are legible. It’s very 
common for artists to create gorgeous maps at high-res, and then be 
saddened by the fact that no one ever sees their hard work.

If there are just a few really important faces, it may sometimes be worthwhile 
to actually get in there and hand-tweak the individual MIP level images. 
That’s also tedious. Often, we can work wonders simply by applying a good 
sharpening algorithm to the MIPs as they are created, to save time and still 
accentuate key features.



15

Sharpening on MIP levels

Here’s a quick example showing our “Dusk” model with two different vrsions
of the same texture. The shape of her mouth is geometry, so that centerline 
is always sharp – but look here at the eyebrows, or the definition of her lips 
and the little cupid’s bow, and the faint but sustained presence of her 
freckles. Just choosing to sharpen or not sharpen can give a character 
stronger, more characteristic features.



16

Which Size is the Right Size?

UVDetective.fx

DEMODEMO

Knowing which texture size is the right size can be difficult. I’m going to shwo
you a short demo of a shader I made to simplify the answer.

DEMO: MIKEUVDETECTIVE.FXPROJ

Here’s UVDetective on our character Mad Mod Mike. As I roll this back and 
forth, you can see the colors shift. Up here in the properties, I can type-in 
any texture resolution – let’s say 512 – and then adjust the character or other 
model to a size that I think would be typical in-game. Here, black means 
“about right” – yellow means “could be smaller and you wouldn’t notice,”
while blue means “the texture’s getting stretched.” Just a little blue on the 
chin is probably pretty harmless.

So if Mike’s face were typically being rendered at about this size, which is…. 
About 300 pixels high (for the projector), then a 512 map would be just about 
perfect for best-quality rendering. Anything higher-res is a waste of effort.



17

The Evils Charts Can Do

Texture Atlases and charts 
let us remap any 3D shape 
to a group of 2D shapes

I’d like to talk a little about charts and MIPmaps.
Charts are great, we all use texture atlases and charts. They are a neccesary evil that we all 
deal with when applying 2D textures to complex, arbitrarily-shaped 3D objects. I just want to 
say, there is a limit!

This is an actual surface normal map that I ran across about a year ago. It was generated 
automatically. I think at times we’ve all seen a very splintered map like this. Fortunately it 
never shipped with a game.

For a model with no texture filtering, no mip mapping, this might actually work. But if it’s MIP 
mapped or smooth-textured in any way, the results will be absolutely terrible, for a couple of 
reasons.

First, when we filter down, the pixels that are near the edges of these many many charts will 
start to absorb black. Black isn’t a neutral color!



18

The Evils Charts Can Do

Texture Atlases and charts 
let us remap any 3D shape 
to a group of 2D shapes

Look at this map when you drop it a few MIP levels – especially the edges and the many 
small pieces down here.

The normals were’s seeing here are going to get all mixed-up, all over the model when it’s 
rendered. And are these valid values? Maybe here or there in the large flat regions, but for 
the smaller bits, our filtering algorithm, which was theoretically supposed to make things look 
good at all distances, has turned into a sort of evil random number generator, and the model 
is going to sparkle like crazy.

This is a problem that will occur not just for normal maps, but for color maps too.



19

Making Do with Charts

The evil you see versus the evil you 
don’t see

Here’s a map that’s been made with an eye toward these sorts of problems. 
The artist has started from a background color that’s not miles away from the 
color of his textured portions, so that while atlas-related filtering errors might 
still occur, they’re far less likely to cause a visible pop, or to even be noticed
by a player in-game.

If you have maps like this in your game against a black background, I 
suggest you take a look at the characters when they’re turned and at a little 
bit of a distance – are you seeing sparkly seams? It might be worth changing 
the background color to something less noticeable.

Further, he’s been reasonable about using hand-defined instead of 
automatically-generated UV coordinates on this model. The pieces are 
reasonably-sized, and they’ll hold detail better as they work their way down 
the MIP chain.



20

This texture represents an attempt to fix some of the normal-mapping 
issues. This is actually a re-built version of the same nightmare map from a 
minute ago.

Black corrected to grey, to reduce contrast
Edges smudged around to reduce high-level Mip errors further.
This area… at low levels this green is going to pollute this red and vice-versa 
and we’re really pretty-well stuck with that. Sad but true.

But there is another problem in reducing a normal map like this…. And one 
that so far no tool available, to my knowledge, has truly managed to handle 
fully. So I can’t offer an easy solution, but let you know what some errors 
might look like when you occasionally encounter them.



21

Normals from Bumps

Here’s a simple bump map, and a matching normal map made from it in 
Photoshop using the standard NVIDIA normal-mapper filter.

When we make a normal map from a bump map, we are actually blurring the 
image – comparing across neighboring pixels. 



22

Normals from Bumps

See how the normals cover a larger area than the original in the blowup? 
This has an important effect on what happens when we filter this image for 
shading, later on.



23

MIPs and Normal Maps

What happens when we MIP a normal map?

I went onto CgTalk this past week, anyone use that? I went on and was 
digging in the forums looking for insight into how other people deal with 
normal maps and I was surprised to find a lot of people struggling with these 
issues and scratching their heads. 

Here’s a typical tile grayscale bumpmap.



24

MIPs and Normal Maps

And here’s a normal map made directly from that, using a photoshop filter.

If we make MIP maps from that normal map….



25

We get a picture like this

But let’s compare to the grayscale…..



26

You can see that the grayscale holds a lot more interesting detail that we’re losing in the 
MIPped normal map.

And this is even given that I’ve deliberately faded the lower mip levels toward grey, so that 
the depth of the bumps gets smaller alongside the UV size.

Normal-map creation loses detail. It’s a type of blur operation, and MIPping itself is a blur 
operation. So we lose a lot of the detail we went to the trouble of creating in our bump map! 
If this bump map has a corresponding color map, we can sometimes see these disparities 
quite clearly.

Worse, our normal-mapping algorithm is based on comparisons of neighboring grayscale 
values. But when we MIP the normal map itself, we’re actually shrinking not just the picture, 
but the filter we used to create the normals, too. If we started with a 3x3 filter, the next MIP 
will effectively have a 1.5x1.5 filter, then next one a filter of ¾ pixel x ¾ pixel…

The result can be either complete lack of bump, or random distracting sparkling of the 
surface normals at middle levels, or probably both.

What we’d rather have is a MIPped normal map based not on the highest-resolution only, 
but one based on the scaled MIP map levels of the bump map itself – in other words, on 
what we’re seeing here in the grayscale version.



27

The result looks like this. We get more detail down in the lower levels. And 
since we gently scaled our bump map MIPs toward a neutral gray, we still 
get a sort of scaling down of the bumps in both XY dimmensions and the 
perceived depth of the bump, without such a serious sacrifice in detail.

Let’s compare to the previous result

See the differences? Here, here, and the crispness of these lines? There’s 
NOTHING in these lower levels, but here we’re still seeing something 
worthwhile.

Anyone using lots of normal-map tiling – for buildings, for roads, for ornate 
armor, for almost anything – should be aware of this technique.



28

Here are some more comparisons. Here we can see better rendition of 
structure….. Look how the lower ones in the poor version might have stuff in 
them, but it’s junky – the overall structure just turns to noise.



29

Again, a little better roughness at the low levels,



30

Here on some other shapes…



31

…and so forth.

While you could manage all these manipulations by hand, it’s actually pretty 
simple to do the right thing, we’ve written our DDS exporter for Photoshop –
that is, the NVIDIA DDS exporter -- to do the right thing for you, just by 
selecting the “Normal Map” option when converting a grayscale bumpmap to 
mipped DDS.



32

Best Practices: Normal Maps

Common, Complex, & Wrong:

So the typical workflow, and I’ve seen this at a lot of studios, whether they’re 
using Photoshop, in-house tools, or whatever, is this.



33

Best Practices: Normal Maps

Common, Complex, & Wrong:

DON’T DO THAT. You lose information, you can create random sparkling
and other artifacts, and to top it off it’s actually more complicated than it 
needs to be.

Fortunately, the RIGHT way is actually simpler!



34

Best Practices: Normal Maps

Common, Complex, & Wrong:

Easier, Better:

If you’re using Photoshop, just use the DDS exporter and let it create the 
normal mapping for you. All of the same options for normal mapping are 
available in the exporter, and you’ll get a cleaner result. You can even apply 
sharpening to the lower MIP levels if you like, to enhance the key parts of 
your bump map.

I’m sorry to say that this not-so-good workflow is very very common. If you 
don’t know what your normal-texture delivery workflow is, it would be worth 
your while to go check it out when you go home from GDC. You may find 
that simply be re-generateing the MIPs, without actually changing any of the 
source game art you’ve already made, you can get better detail and 
definition in the game you’re working on right now -- especially on models 
like roadways, brick buildings, large spacecraft, rocky hillsides, anything 
where there’s likely to be tiling and a large range of different scales.



35

Color & Depth

While we’re on the subject of bricks, let’s talk about color manipulations.

Here’s some brick. One thing you’ve probably noticed about any surface that 
has depth – in fact, about just about ANY surface – is that it has different 
characteristics when viewed head-on, like this brick, or at a grazing angle. 
This is really true of any sort of object.

Try it yourself, right here. Take anything and look at it juuust along the 
grazing angle. We normally think of paper as being matte, but if you hold it at 
a narrow angle, you might be surprised to see that you can see a clear 
reflection of the screen. Iy you’re wearing a sweater or a tee-shirt, you can 
look closely along the contour edges and you’ll see that the color of that 
clothing looks slightly desaturated, mixed with the color of lots of random 
little fibers that are too small to normally notice individually, but viewed on-
edge through a mass of them, add color. When you go home after GDC 
today, notice that even the darkest-colored cars can reveal a pale layer of 
dust, but only when viewed on-edge.



36

Color & Depth

“Facing Ratio”:
(N·V)

C = lerp(mossColor, texColor,
pow(dot(N,V)),expon))

Shader programmers typically express the on-edgeness as a term called 
“facing ratio” – they compare the direction of the surface normal to the view 
direction by normalizing those two vectors and taking a dot product. When 
vectors are co-incident – in this case, when the view is head-on – that dot 
product will be ONE, and when the vectors are at right angles – in this case, 
the view is grazing along the contour edges – the dot product is zero.

Let’s say that these bricks were the inside surface of a dank old tunnel. We 
can use the facing ratio to create the illusion of a thin layer of green mold, 
covering everyting. When you look square-on to such a surface, you 
wouldn’t see the mold. But as you look on down the tunnel, that thin layer of 
mold would eventually dominate, because you’d be looking through more 
and more mold, until all you see is the green.

A possible snippet of shader code could look like this. We have a texture 
color, an extra mold color, an extra exponent, a power function, a lerp 
interpolation, and the two input values N and V, which probably needed to be 
normalized which involves a square-root or two. For a programmer, easy. 
But it does burn-up a number of shader instructions. Is there an easier way?



37

Color & Depth

“Facing Ratio”:
(N·V)

C = lerp(mossColor, texColor,
pow(dot(N,V)),expon))

An alternative, worth considering on large models that don’t move around 
much, is to just color the mips. The Mip texture I’m showing now has simply 
given each successive layer a little bit of a green tint, untill the lowest ones 
are almost entirely green.

The texture itslef, when compressed by perspective, can contain the facing 
ratio. Let’s look at this on a model



38

This is the texture ONLY, applied to a cylinder. No lighting or other shading. 
Our facing-ratio code completely disappears, the effect comes for FREE.

This approach isn’t appropriate for all models, by any means. In the case of 
a tunnel, the relationship of the player’s view and the model is pretty 
consistent. You probably wouldn’t want to do something like this on models 
like characters and moveable props, which could be turned at any angle 
regardless of their distance. But for surface like this tunnel, or pavement 
outdoors, this can add another layer of texture control that can be cheaply 
and easily added to any game without having to do a lot of shader tweaking.

In fact, since it’s added right at the last stage of texturing, the delivery from 
the original painting to the final in-game MIPped texture, it’s something that’s 
easy to come back to later, to re-tweak without having to drag-out the whole 
texture-painting process. 



39

Texture Scripts in Photoshop™

“Mipster”

DEMODEMO

In fiddling with textures in Photoshop, I’ve made myself a couple of useful tools that we’ve 
started bundling with the DDS exporter.

One tool is called the CubeMapShuffler, and it’s just a fast and easy way to move texture 
formats back and forth between the so-called inverse-cross format and six side-by-side 
squares. It’s handy when you’re hand-painting cube maps or if you inherit a map from 
someone else.

The other script is called Mipster, and that’s what’s shown here. Mipster is a MIP-map 
builder that uses Photoshop’s built-in filtering and color tools, rather than counting on the 
exporter to do the right thing for every possible circumstance. Adobe spent a lot of time, 
effort, and I’m sure cash in getting their image filtering really really right, and Mipster
capitalizes on that. The script lets you start from a single high-res image, and it will quickly 
generate all of the MIP levels using the high-quality filters that are already a part of 
Photoshop – you can choose between the standard ones – and writes each MIP level into its 
own layer, so if you want to hand-tweak or examine any particular part of the MIP chain, it’s 
right there for you.

It also lets you add tinting by adding transparent color overlay layers, that can each be hand-
tweaked at any time for doing tricks like rolling to a specific color at a specific point in the 
chain – and finally, it also can manage handling texture alpha, either as a unified alpha 
channel or a different alpha for each MIP layer. It’s free, it’s fun to watch, and I mention it 
here partly because some of the examples were made with it and also because I’m always 
keen to hear user feedback on how we can make these sorts of tools more powerful and 
useful.

DEMO: NVIDIA_MIPSTER.JS



40

Text Mips

Adobe spent a lot of time on image filtering, and also a lot of time –
alongside Apple and Microsoft and probably others – in getting text 
renditions right. I’ll just mention in passing a variant of Mipster that I’ve been 
fiddling with recently, that capitalizes on Adobe’s expertise at typesetting 
regardless of the image size.

In “Mipster Text,” which we can make available on the NVIDA web site or 
just email me for a copy, Photoshop actually re-renders the text layers for 
each MIP level. Adobe is very proud of all their secret tricks at managing text 
at arbitrary sizes, and in general the text rendered into the lower MIP levels 
IS indeed more legible – if you are using text as part of your textures, it may 
be worth your while to try this and see if your texture is more legible. In my 
trials I’ve usually gained one or two MIP level’s worth of legibility, which can 
be important at the smaller sizes.



41

Gratuitous Equation Alert!

)()(∫ ∫≠ xfxf

Okay, technically this isn’t an equation it’s an inequality. But it shows a slight 
error that we often see in game lighting.



42

Gratuitous Equation Alert!

)()(∫ ∫≠ xfxf

Filtering/AA

Lighting

When we filter, we’re integrating all the values within a pixel to get a nicely-balanced result. 
Texture filtering works great because it’s just a direct use of the color.

But what about normal maps? We’re taking a filtered value from the map, and plugging it 
into a potentially high-frequency function, namely specular lighting.

What we WANT is this, over on the left. What we actually GET is this, over on the right – we 
filter the inputs instead of the results.

This is wrong, right? Why is it anyone ever gets away with this?

Principally, because when we made the normal map – we blurred the input image. We 
essentailly mushed-out a lot of those high-frequency problems. So we’ve been inadvertently 
correcting one bug with a different bug for years, and everything works pretty well.

But there are also normal maps around that were NOT create this way – especially normal 
maps that come from geometric modeling tools where a high-res geometry is replaced by a 
low-res one. These detailed normal maps will have high-frequency, un-blurred values. And 
yes, they will sparkle in the highlights.

So is there any way that we can get the result over on the left, that we want, instead of the 
one on the right, which is what we usually get? 



43

The Toksvig Factor

No sparklies at 
the edges!
Need to choose 
a fixed phong
exponent

http://developer.nvidia.com/object/mipmapping_normal_maps.html

DEMODEMO

Yes! I’m not going to go into any further math on this, but Michale Toksvig
over at NVIDIA has done the math for you and come up with a scheme that’s 
only slightly more expensive that regular phong shading but uses texture and 
MIP mapping to pre-integrate phong highlights for any given specular power.

DEMO: TOKSVIGAA.FXPROJ

Here’s a running demo, and I can switch back and forth – see the little beads 
and jaggies here? Now I’ll switch the technique setting to use the Toksvig
method, and – voila – no sparkles!

This is a powerful technique and I recommend all programmers and TDs
take a good look at it.



44

Nightfall – color control

Okay, back to painting.

Here’s a classic example of using texture to control lighting -- it’s shown up 
in a few books, and I’d like to suggest some possible uses of the same idea.



45

In this shader, we’re applying two different textures and using the lighting 
information to interpolate between the two of them. For the programmers, 
were’s lighting the globe normally with the day texture, then adding-in the 
night texture based on a negative N dot L – that is, lambert lighting with the 
sign of the dot product reversed. It’s positive on the daylit side, just as usual, 
but we use the absolute value of the negative portion, over here, to bring in 
the moonlight and the city lights.

Typically, when we write lighting shaders we interpolate between some 
color, maybe textured, and black. But as this shader shows, there’s no 
reason that we can’t interpolate between two different textures, two different 
color schemes, and the computational expense isn’t significantly more than if 
we were doing “standard” lighting. It’s something to think about, and the idea 
of using textures as part of the lighting equation is a powerful one.

DEMO: NIGHTFALL.FXPROJ



46

Painting a Shader

1D & 2D 
functions

So let’s take the idea of texture-controlled shading a few steps further.

As shader programmers usually know, you can replace just about any bounded 1D function 
with a single color gradient texture. Similarly, we can replace most any 2D function with a 2D 
texture. And at times we can break down complex functions into combinations of texture 
lookups.

This is a really powerful technique, it’s actually pretty well-known and used in the 
visualization and CAD communities, but not so often in games.

This illustration is of, well obviously, a dinosaur covered in car paint. The car paint is directly-
pulled from sampling data of real-world car paint, and the functions that describe that real-
world car paint BRDF --- does everyone know what we mean when we say BRDF? – that 
BRDF is coded into a pair of textures that are indexed, not on the surface UVs, but on 
variations in the view angle, the angle to the light, and their combinations.

Now your game probably doesn’t have metal-enamel dinosaurs – that’s programmer art –
but it might have something like this:



47

Painting a Shader

1D & 2D 
functions

The truck we’re seeing here uses a BRDF, that is a complex surface shader, that was hand-
painted. It started out by getting some samples from real-world car paint, but ultimately the 
artists on this particular NVIDIA demo project found that it was just as easy – and in fact 
better, for what they were doing – to just paint-in a new BRDF themselves, by rading the 
phycially-based source textures into Photoshop and repainting them to get something they 
really, really, liked.



48

Two Pictures = One BRDF

+ =

It’s really not that hard, once you get fiddling with it, to create your own 
BRDF.

Here are some examples of a shader we ship with the standard NVIDIA SDK 
samples. It’s called “Cook Torrance” but since it’s based on two textures, 
you can actually quickly tweak it around to create a wide variety of arbitrary 
sorts of materials.

A great aspect of this approach is that it requires almost zero programmer 
intervention. A single, highly-efficient shader, with a single set of vertex 
buffer setup rules and so forth, can be used to draw lots of different sorts of 
interesting materials. A BRDF like this can be combined with other standard 
UV-mapped textures, the input textures can be very small, and most of the 
math can even be done in the vertex shader! The pixel shader is mainly 
doing texture accesses and mixing colors together. 

Let’s look at this on our model “Dusk”:

DEMO: DUSKCT.FXPROJ



49

DEMODEMO

Here are some different serious and fanciful materials made using this 
technique.

All of these textures were made quickly in Photoshop, just using the gradient 
tool. All that is but the last one, which shows a little bit of the whackier
possibilities. These sort of textures can also handle anisotropic or simple 
plain-vanilla sorts of surfaces.



50

Providing Sensible Controls

The most harmonious 
circumstance comes when 
these worlds intermesh
Everything really great that 
any of us have done has 
been the result of teamwork
Texture and Shading are 
both about color control

J. Itten, Die Begegnung, 1916

One problem with that technique is that we’re asking the texture painter to 
guess what the final result will look like. Paint in photohshop, save to disk, 
read it into a 3D app, repeat, repeat, repeat…..

What would be better would be a way to look at these results directly as you 
paint them, right?



51

Brdf_paint

Let artists paint 
the BRDF 
directly…

DEMODEMO

Here’s also a simple sample of an FXComposer project that pretends to be a 
simple app – it’s the sort of thing that could be easily coded as a dedicated 
paint app and incorporated into other tools, or maybe we’ll expand it a little 
ourselves.

DEMO: BRDFPAINT.FX

It’s a bit awkward, the UI is not the prettiest, but it lets you paint directly into 
the BRDF while seeing the results rendered in real time – an idea that I’m 
hoping can be as useful and compelling as, say, Z-Brush.

FXComposer is a pretty clunky way to do this, but it let me make a prototype 
very very quickly – a dedicated BRDF-painting app would be a fantastic thing 
to have, and lets artists go at all sorts of different surfaces by just painting 
directly while they see the result.



52

Hair Functions

Use Kajiya-kay.fxh, or… roll your own!

Grayscale Color

DEMODEMO

Hair direction is… a normal map!

Any procedural texture that you can find in the shading arsenal has the 
potential for hand-painted tweaks….. Here are some textures that were 
created by a program to simplify hair shading. One texture defines the color 
or grayscale character of the highlight, while the other texture, unseen here, 
defines the direction the hair lies on the surface of the head – and directions 
as colors are exactly the same as… normal maps!

But how do you paint a normal map?



53

Directional Painting

The act of painting is about gesture – why not capitalize on that? Here are 
the results of another shader. The shader was designed to moosh-around 
images with displacement, but look at what it’s creating, over here in the 
texture window – the color changes according to the mouse direction, 
resulting in a texture – a texture I can save to disk at any time – that lays-out 
the direction of my strokes, and in this case the direction of the hair.

DEMO: PAINTLIQUID.FXPROJ



54

Directional Painting

DEMO: LIQUID_PAINT.FX

There are all sorts of fun applications for this technique, in the illustration you 
can see I’ve used it to just paint-on motion blur.



55

Even More Abstract Textures

Textures as animation channels
Textures to guide particle animation/ 
image flow
Etc….

SLIDE IN PROGRESS

There are tons of abstract uses for texture that you might try intercepting 
with painting – here’s a simple one, I’m replacing the shadow color with a 
texture overlay to create cross-hatched shadows.



56

Shading to Look Like Painting

Anime Shadow 
Technique

Reice with Rounded “Hand-Drawn” Shadow Shading

“Reice” courtesy Han dae
Hoon, Graphic Factory, Korea

No discussion of painting and shading would be complete, I think, without a 
mention of toon shading.

I’m going to show you a quickie technique that I borrowed from Studio Ghibli, 
who created if for HOWL’S MOVING CASTLE. They wanted shadows that 
had a soft, cartoony quality.

In games, a low-poly character can give itself away from shadows. This 
technique will give any model a soft, round, cartoony shadow.

So let’s start from a character appropriate to that, this one is called Reice
and she’s from Han-dae Joon at Graphic Factory in Korea.



57

Render Color and Normals

RGB Raw Surface Normals

To get rounded shadows, first we’ll render this character twice – or just one 
time with two simultaneous image outputs, thanks to MRT. One image is 
simple color, the other is a set of the surface normals, re-cast as a normal 
map.



58

Blur the Normals

Blur Pass 1: Horizontal Blur Pass 2: Vertical (and optional clip to show form)

Next, we’re going to blur the normal map – a LOT. We’ll do two passes, one 
horizontal, one vertical.



59

Composite

Hard cutoff 
on blurred 
normals = 
“round 
shadow”

Reice with Final rounded shadow outline

DEMODEMO

Now we just recombine the color image with lighting based not on the actual 
surface normal, but the blurred image normal.

DEMO: REICE_ANIMESHADOW.FXPROJ

As we play with the demo, you can see how controllable this is – at stride 
zero the poly shapes are clear, with wide strides we get soft rounded, very 
cartoony shadows that move very consistently across the character.



60

Pushing Forward

You progress not through what has been 
done, but reaching towards what has yet 
to be done

– Kahlil Ghibran

So we’re running short on time, I’ll need to wrap up! Remember, there’s NO 
REPLACEMENT FOR FIDDLING AROUND. There are lots of potential ways 
to let artists interact visually with the surfaces and effects possible through 
shading, and thanks to high-powered interactivity, they can do it in ways that 
we might not have thought of only a few years or even months ago. 



61

Pushing Forward

You progress not through what has been 
done, but reaching towards what has yet 
to be done

– Kahlil Ghibran

The market only rewards innovation
– Gopal Solanki

Try out all these tools – do download the samples from the NVIDIA 
developer web site, and let us know about anything cool and useful that you 
find, because there’s plenty of sky left to explore.



62

Resources

http://developer.nvidia.com
GPU Gems series
kbjorke@nvidia.com

…and thank all of you VERY MUCH for visiting this talk!


