
Mobile Performance Tools and
GPU Performance Tuning

Lars M. Bishop, NVIDIA Handheld DevTech
Jason Allen, NVIDIA Handheld DevTools

Copyright © NVIDIA Corporation 2004

NVIDIA GoForce5500 Overview

World-class 3D
HW Geometry pipeline
16/32bpp textures and color buffers
Programmable pixel shading
QCIF, QVGA, VGA, XGA screen sizes!

Integrated multimedia features
HW video decode (video textures!)
HW video encode (videoconferencing)
HW camera support (live camera into a texture!)
HW audio support

Copyright © NVIDIA Corporation 2004

NVIDIA GoForce5500 3D

Geometry Pipeline
HW Transforms
Vertex Buffer Object Support

High-performance Texturing
1024x1024 textures
Mipmapping w/ trilerp
Compressed textures

Powerful pixel shading programs
Up to 5 textures (and 12 texture samples!) per pass
Complex shader instructions
Access to additional per-pixel components

Copyright © NVIDIA Corporation 2004

Performance Considerations

Warning: Many of these items may look familiar
3D on Handhelds is not wildly different from
desktop or mobile 3D
But the specifics and balances are different
We’ll focus on these a bit

Copyright © NVIDIA Corporation 2004

Holistic Performance Considerations

The GPU doesn’t exist in isolation
Balance the three major system components:

CPU
System bus
GPU

Any one of them can kill performance

But on HW-accelerated handhelds, the GPU is the
least likely candidate as the initial bottleneck
today…

Copyright © NVIDIA Corporation 2004

CPUs

CPUs on today’s handhelds (especially low-power
devices) are limited compared to PCs even from
years ago

ARM9’s with no FPUs are very common

ARM11’s are gaining in popularity
But are still a small subset, and the FPU is optional…

Caches are smaller

Copyright © NVIDIA Corporation 2004

Minimizing CPU Work

Know your CPU
Avoid floating point on an ARM9!
Be careful with it even on ARM11+VFP
Be cache-friendly (avoid many passes over vertex arrays)

Avoid redundant render state changes
Needless driver work can cost
Many drivers don’t “fast path” redundant calls

Optimize triangles per call
Batch triangles
Use multitexture/shaders to avoid multipass rendering

Copyright © NVIDIA Corporation 2004

System Bus

Narrower and slower than the PC

16-bit still common, indirect buses still common

Result is lower bus bandwidth
Especially when data is sent in small bursts

Copyright © NVIDIA Corporation 2004

Minimizing System Bus Traffic

Use VBOs wherever possible
Mark them as GL_STATIC_DRAW when possible
Use VBOs for index buffers, too! (almost always static)

Avoid texture loads per frame
Use render-to-texture for dynamic textures

Don’t read back the framebuffer
Unless you are taking screen shots…

Copyright © NVIDIA Corporation 2004

GPUs

Moving ahead very quickly (perf and features)

So the key is to feed them well

But it is still possible to choke a good GPU well
below its peak rate

In order to minimize power consumption, various
rendering features are not “free”

I.e. you don’t pay for them when you don’t need them…

Copyright © NVIDIA Corporation 2004

Maximizing GPU Performance

Maximize texture throughput…
Format
Dimensions
Access coherence

Maximize triangles-per-call
Single-pass effects
Batching

Copyright © NVIDIA Corporation 2004

Texture Formats

Use compressed textures
GoForce supports DXT1/3/5 natively at full performance!

Save 16- and 32-bpp textures for when you need
them

And prove that you do!

Use single-channel (8bpp) textures when you can
Often useful in shaders
Good precision without large size

Copyright © NVIDIA Corporation 2004

Optimizing Texture Sizes

Don’t just blindly turn off mipmapping!
Dropping just the finest mip-level saves ~3x the pyramid
See if you are even using the finest mip-level!

Create large “virtual textures”
Use single-pass multitexture and shaders
Compose smaller ones at different scales
E.g. (detail * base * darkmap * 2)
3 256x256 textures can create the effect of 1024x1204 in
3/16 the space

Copyright © NVIDIA Corporation 2004

Mipmapping

Use mipmapping to increase performance

But don’t waste mipmap pyramids
Skip them for 2D UI elements

Remember that embedded memory on handheld is
optimized for power, not just speed

But use trilinear filtering only when needed

Copyright © NVIDIA Corporation 2004

Isolating Performance Bottlenecks

All of these recommendations are great, but how do
I figure out which ones will help my app?

“Old-school” – Modify application to add:
Performance counters, timers, wrappers around your
OpenGL calls, ability to turn off functionality

The new way – NVIDIA PerfHUD ES
The PC developer’s good friend is now available for
GoForce mobile GPUs!
Makes it easy to do initial performance analysis of
OpenGL ES applications

Copyright © NVIDIA Corporation 2004

PerfHUD ES: What is it

Perf HUD ES is the OpenGL ES analogue to the
popular and powerful PC PerfHUD tool
Provides an instrumented driver and a client UI

Supports
Live performance monitoring of running app
“Directed tests” to help isolate bottlenecks

Unlike the PC PerfHUD, the ES version displays the
results on a host PC, not the handheld screen

Would you want to see stats on a 3” VGA/QVGA?

Copyright © NVIDIA Corporation 2004

PerfHUD ES: How it works

GoForce HW devkit:

Runs target app and
the instrumented driver

Instrumented
GL ES Driver

GL ES 3D
Application

PerfHUD ES

Host PC:

Runs PerfHUD ES UI Client
and serves devkit file system

Network
connection

Copyright © NVIDIA Corporation 2004

PerfHUD ES Client

Copyright © NVIDIA Corporation 2004

Performance Statistics

Current (running mean) frame rate

Timelines with per frame reporting of lots of data

Histogram of batch sizes (tris per call)

Indicator lights that flash on expensive operations

Copyright © NVIDIA Corporation 2004

Timelines

Total frame time
Frame time spent in the driver/GL ES
Number of draw calls in frame
Video memory used
System memory used

Copyright © NVIDIA Corporation 2004

Batch Histogram

A graph of the number of triangles per draw call
Most experienced developers are pretty good these
days at getting their batch sizes up
But… Look out for particles and text systems,
which are sometimes the causes of poor batching

Especially when they are used more heavily than they
were designed

Copyright © NVIDIA Corporation 2004

Event Indicator Lights

Loading new texel data to a texture

Loading new data to a VBO

Creation of a new pixel shader

Each of these should probably be investigated if
they are blinking every frame (or frequently)

Copyright © NVIDIA Corporation 2004

Using the Statistics as Triage

DevTech can use the passive stats to quickly analyze a
newly-received app. We frequently look at:

The lights
Are textures or VBOs getting created/updated frequently?
Textures are of particular interest

The batch-size histogram
Is the mean number of tris per batch low?

The total-time and driver-time timelines
What is the overall ratio of app time (total minus driver)
and driver time? Focus where the time is being spent

Copyright © NVIDIA Corporation 2004

The “Directed Tests”

Optional modes that intercept rendering and state
calls to change the rendering without having to
modify the app

Replace all textures with a 2x2-texel texture
Ignore glDraw* calls
Ignore gl* calls
Disable VSYNC
Disable pixel (AKA Alpha) blending
Disable GL_LIGHTING
NULL viewport

Copyright © NVIDIA Corporation 2004

Directed Test Use-case Examples

Think you might be fill-rate bound?
Enable “NULL viewport”
If the frame rate shoots up, you may be fill-bound

Think you might be texture-bandwidth bound?
Enable “2x2 textures”
If the f.r. shoots up, you may be texture-bound

Think you might be app-bound?
Enable “Ignore all GL calls”
If the f.r. does not shoot up, you are likely app-bound

And so on… All without touching your source code

Copyright © NVIDIA Corporation 2004

Speed Control

Advanced feature – requires a simple modification
to the app (timer extension)
Allows the user to slow or even stop time in the app
Makes it possible to replay the same frame over and
over while changing directed tests, etc
Useful for isolating bottlenecks in a particular scene

Copyright © NVIDIA Corporation 2004

Coming Attractions

This is just the first version of PerfHUD ES
Much more to come!
Some features will be similar to those in PC
PerfHUD
Others will continue to be very handheld/embedded
specific

Copyright © NVIDIA Corporation 2004

Questions??

handset-dev@nvidia.com

mailto:handset-dev@nvidia.com

Copyright © NVIDIA Corporation 2004

	Mobile Performance Tools and�GPU Performance Tuning
	NVIDIA GoForce5500 Overview
	NVIDIA GoForce5500 3D
	Performance Considerations
	Holistic Performance Considerations
	CPUs
	Minimizing CPU Work
	System Bus
	Minimizing System Bus Traffic
	GPUs
	Maximizing GPU Performance
	Texture Formats
	Optimizing Texture Sizes
	Mipmapping
	Isolating Performance Bottlenecks
	PerfHUD ES: What is it
	PerfHUD ES: How it works
	PerfHUD ES Client
	Performance Statistics
	Timelines
	Batch Histogram
	Event Indicator Lights
	Using the Statistics as Triage
	The “Directed Tests”
	Directed Test Use-case Examples
	Speed Control
	Coming Attractions
	Questions??

