
1

Cross-Platform Development
using FX Composer 2.0

Chris Maughan · Kevin Bjorke
Alpha 4 · GDC 2006

Good afternoon & welcome.

2

Copyright © NVIDIA Corporation 2004

Software
Overview & New

Features
Chris Maughan

My name is Chris Maughan & I’ll be telling you about some of the principal features
and improvements we’ve made to FX Composer for version 2

3

Copyright © NVIDIA Corporation 2004

Screenshot

Here’s an example image showing our mike character. You can see that there are
actually a couple of different render-to-texture full-screen effects being used here –
one window is using an corona effect, while another window is displaying an
explosion effect.

Check out what’s going on in the texture panel too – the various stages of the
corona effect are being displayed and updated in real time and the effect animates,
letting you really get a clear look right down into the heart of how your render works

You can see – project explorer, textures, python scripting, the shader editor and the
properties.

4

Copyright © NVIDIA Corporation 2004

Target Audience

Game
Artists

Production
TDs

Engine
Programmers

Photos courtesy J Samuel Burner, Deb & Matt

FX Composer 2 is designed from the outset as a PRODUCTION TOOL.

We see three different sorts of users – you yourself may fit into one, two, or all three
categories.

Those categories are game artists, production TDs, and core game-engine
programmers.

Importantly, FX Composer 2 doesn’t just provide them with tools to do their own
work, it provides a common platform for all of these people to work together.

5

Copyright © NVIDIA Corporation 2004

Why FX Composer 2 ?

Draws things a DCC app can’t
Shadows, full-screen effects
New hardware features

Fully customizable
Plug-ins, Scripting, devices, and
GUI Layout
Engine integration

Shader profiling
Using our own compiler
technology

FX Composer is designed with features for every kind of user.

First, it can make pictures that artists just can’t get when they’re in a DCC app. DCC apps are very
capable but they’re designed to be fast at their core strengths and they each have a fixed real-time
rendering architecture. FX Composer is designed specifically for managing shading, for handling
arbitrary render architectures. So that means that artists can directly visualize and tweak attributes of
their scenes that just aren’t visible in a DCC app. We’ll expand on this further in a little while.

Second, FX Composer is customizable, scriptable, and .NET compliant. Whatever the production
environment, FX Composer is readily adapted to it. If your studio has custom data formats, monolithic
control applications, or any other tools based on ET or on Python or C# or other CLR-based
languages, those tools can interoperate easy with FX Composer.

Finally, FX Composer has an integrated shader profiler that lets game-engine programmers get right
in at the heart of efficiency and debugging issues, so they can squeeze every last nanosecond of
performance out of their titles.

6

Copyright © NVIDIA Corporation 2004

FX Composer Introduction

Major update from 1.x
Reworked from the ground up
Generalized rendering engine
User interface improvements
Plugin IO – e.g. COLLADA, OBJ, ..
Multiple device support - Cg, PS3, GLSL, etc…
Scripting with IronPython.NET

We rebuilt it from scratch, to address the needs of developers using the current
version. After listening to feedback developers wanted tighter integration with their
pipelines, more customizability and cross platform support.

Rendering engine is one of the big changes. A generic, graph based, architecture.
Nodes and pins ad links. Very general for different cases.

Massively improved UI. Undo/Redo means less annoying dialogs. Cleaner
approach to the whole thing.

IO is pluggable. We support what FXC1 did, but with collada as well

Devices. GL, etc.

Scripting through an .NET compliant language. We use IronPython.

7

Copyright © NVIDIA Corporation 2004

Reworked design

Now written in C#/.NET
Easy to extend and integrate

A hierarchical plugin system
Completely extensible – plugins define layers of
behaviour
SDK examples

A graph system
Manages component dependencies
Used in the rendering engine

Almost 100% C#/.NET Add plugin system diagram.

Plugins define hierarchies of functionality. Entirely new features can be
implemented. For example, the scene plugin defines a scene graph, the scene
rendering plugin defines a scene graph renderer & idea of a device plugin.

Graph system is used to manage dependencies between engine components, and
extensively in the rendering

8

Copyright © NVIDIA Corporation 2004

Rendering Engine

Extensible
Plugin graph nodes can change rendering behaviour
Custom graphs to match your game engine
Several default graph nodes supplied – draw, clear, etc.

COLLADA FX & SAS supported through the graph
Layered effects just build bigger graphs…

The renderer is one of the major changes. The previous version of FX Composer
was basically a SAS renderer. This version uses a graph to evaluate the scene.
This graph is flexible enough that developers can extend it and it can support
existing concepts, such as SAS. You can build graphs through script to match your
rendering engine, for example.

9

Copyright © NVIDIA Corporation 2004

DXSAS Sample – Edge Detect

Technique Main
<

string Script =
RenderColorTarget0=SceneTexture;
RenderDepthStencilTarget=DepthBuffer;

ClearSetColor=ClearColor;
ClearSetDepth=ClearDepth;

Clear=Color;
Clear=Depth;

ScriptExternal=color;
Pass=ImageProc;

>
Pass ImageProc
<

string Script = RenderColorTarget0=;
RenderDepthStencilTarget=;
Draw=Buffer;

>

Don’t worry about the syntax/details
Sets a couple targets
Clears them
ImageProc does the quad (Draw=“Buffer”)

This is how a SAS full screen effect looks.

10

Copyright © NVIDIA Corporation 2004

RT Texture

Depth

Shader
(ColladaFX)
Edge Detect

DrawScene Draw QuadClearViewport

FX Composer 2 Graph
Edge Detect

Input Pin
Output Pin
Flow Pin

Use the graph to do any sort of rendering. Extensible.

11

Copyright © NVIDIA Corporation 2004

‘posterize, hot
corona +

posterize’,
‘hotcorona’,

‘explode’

Top right is a combo. The others are individual effects.

12

Copyright © NVIDIA Corporation 2004

User Interface

All docking windows are plugins
Can add menu items/toolbars to the application window
VC2005 docking style

Scripts can create menus &
toolbars
Many new and enhanced
controls
Full Undo/Redo

Note the nice 2005 style dock hints. Much easier to use with this and other
improvements such as undo/redo

13

Copyright © NVIDIA Corporation 2004

Project Explorer

Multiple
Scenes

Effects
&

Materials

The project explorer is a hierarchical look at your entire Collada project area….

A project can contain multiple scenes, which is good if you’re working on different
parts of the same game – say, different levels, or collections of different characters,
vehicles, and so forth. This project has two scenes

In the larger view, note the distinctions COLLADA has between effects and
materials…a material USES an effect. If I have a model that uses both blue plastic
and red plastic, I only need ONE “plastic” effect – but I can have two different
materials, one red and one blue. Both of those materials call on the same
underlying effect, but each material has its own properties – color, obviously, but
any other properties too, such as choice of textures, choice of techniques, and so
forth.

In FX Composer 2 we don’t bind effects to models, we bind materials to models.

So, looking at these nodes, each one has its properties. We can see or edit the
properties of these nodes in the FX Composer Properties Pane.

14

Copyright © NVIDIA Corporation 2004

Properties Panel

Selection
Slider

Link

Colors

Edit
Button

You can see the properties of any node by selecting it in the project explorer and right-clicking
“Properties.” Materials also have a shortcut node called “parameters” that you can just double-click,
since editing parameters is the most-common operation for an FX Composer user.

For material parameters, as we see here, there are a few things I’d like you to notice.

First, one property is selected, because I’ve clicked on its name

Second, I’ve also clicked the little “edit” button that appears when sme properties are selected, and
that’s caused…

…this slider to appear. The slider ranges and values can be set directly by the shader source itself.
We can slide-around the little gray pointer with the mouse to assign a value, or type-in a specific
number.

This little “Y” symbol means that this particular parameter is linkable – we can click on this and link it
appropriately to the values of some other node. In this case we can see it’s a light position, and we
can link the value of this propert to any light that exists in the current scene. Then we’re free to drag-
around the light or the shaded model and everything will just update auto-magically.

Finally, these little chips indicate a color. When we try to edit these, we’ll get the FX Composer color
picker….

15

Copyright © NVIDIA Corporation 2004

HDR Color Picker

Hue/Sat Intensity

Numeric

The color picker looks a lot like typical color pickers.

We have a Hue and Saturation wheel, and

An Intensity slider.

But notice that the intensity slider can go ABOVE ONE, because this is an HDR
color picker – that is, it has high dynamic range. So you can have colors brighter
than one.

If you know what that’s about, great. If not, I’ll show you an example later. Just
consider over-bright colors as “over-exposed” and you’ll be on your way. But as I
said we’ll do that in a little while.

Finally, for greatest precision we can always just enter text in the numeric fields

16

Copyright © NVIDIA Corporation 2004

Texture Explorer

Cubemap
Panorama

Let’s move to a different part of the UI, the texture explorer. This window shows you
the textures currently in use – it will even do live updates for complex texture
effects.

I’ll just mention one innovation here, because I think it’s cool

The lower window is showing us a cube environment map – the display
automatically unwraps the display as a panorama, making it a lot easier to see.

And on that, um, slightly geeky note let’s look at some programmer parts to the UI:

17

Copyright © NVIDIA Corporation 2004

Material Editor

Syntax
Hilighting

Line #’s

Collapser

The material editor lets us get at the actual source code of any shader. It’s a
modern, full-featured source editor, with highlighting, easy-to-follow line numbering,
collapsable code blocks, and so forth.

Each language definition is stored in a little XML file within the FX Composer install
tree, so new languages are easy to add, or you can tweak the existing ones around
if you’re so inclined.

The editor is also directly ties to the debug window, so if shader errors are found,
the debugger can jump you directly to the offending line.

18

Copyright © NVIDIA Corporation 2004

Scripting and Debugging Panels

Log Debug Script

By default, the log, debugging, and scripting panels appear by default together at
the bottom of the window. All windows are drag and dockable, so if you debug a lot,
or script a lot, you can rearrange them to your fancy.

19

Copyright © NVIDIA Corporation 2004

Drag and Drop Assignments

From
 W

ind
ow

s

Exp
lor

er

From Project Explorer

FX Composer lets us drag and drop both models and materials. We can drag effect
files directly from Windows Explorer – either cgfx format or COLLADA FX files –
directly onto any particular scene object. FX Composer will add these new effects to
the current project, and is smart enough to recurse through any sort of indirect
#include directives and so forth too.

The result will render and you’ll see the new effect and a new matching material
appear in the project explorer window.

OR, if you already have a material defined within your COLLADA project, you can
drag it from the project explorer into the scene view

20

Copyright © NVIDIA Corporation 2004

Scene Viewer

Manipulator

Drag Indicator

The scene window can display one or more views simultaneously, each with a
different camera or even a different rendering method.

We can tumble and drag the camera by pressing the ALT or CTRL keys and zoom
by rolling the mouse wheel.

We can also select objects and move them around by using manipulators – here’s a
rotate manipulator, it has three colored axes and in this picture one of them is
yellow, which means it’s being rotated right when the screenshot was snapped.

The manipulators have shortcuts, QWER across the top of the keyboard, Q for
select, then W E R for translate rotate and scale, just like Maya. This will be in the
notes for this talk too.

This second screenshot shows the name of a material – what we’re seeing is a
snapshot of FX Composer’s drag-and-drop process.

21

Copyright © NVIDIA Corporation 2004

COLLADA is an open asset exchange database
format (.dae)

COLLADA is governed by the Khronos
Group

Includes numerous ISVs and IHVs
Mature DCC plugins for extensive support

FX Composer 2 can use COLLADA for asset
interchange

Used to load scene file
Operates on effects and materials currently
Other data in the file is untouched
Other file formats supported

COLLADA….

FX Composer 2 supports the COLLADA file format. What is it? We had our own XML project format,
nobody liked it.

“COLLADA is an open asset exchange database format” okay that’s a mouthful. What it means is
that COLLADA can be used by multiple programs to exchange assets – models, shaders, scenes,
textures, even animation and physics.

COLLADA is a shared standard, belonging to no one company. The Khronos Group defines
COLLADA, manages and licenses it, and no individual software or hardware vendor can arbitrarily
tweak it or change it. This is the way you want your standards to work.

FX Composer 2 can load a COLLAA file from most any source, ad edit it – but FX Composer 2 ONLY
edits the shading-related parts of that COLLADA file – everything else passes through without
change. FX Composer 2 isn’t an animation program or a paint tool, it’s a real-time shading tool.

22

Copyright © NVIDIA Corporation 2004

Devices

Support Cg, Direct3D,
PS3, GL-ES, GLSL,
etc…
Simultaneous rendering
on the same model

COLLADA file contains
different ‘profiles’ in the
same effect

Scene shown was
imported from XSI, then
Direct3D added

Big new feature for FXC2 – Not just D3D anymore.

23

Copyright © NVIDIA Corporation 2004

Scripting

Plugin provided that enables scripting with
IronPython.NET

Any .NET language could be used though
Scripting is integrated completely into the engine

…because it talks to the engine the same way as any
other plugin
Complete control

You can shoot yourself in the foot if you want to…
…with extreme prejudice

Scripting through Python is powerful enough to get things done, with care.

24

Copyright © NVIDIA Corporation 2004

Production Use &
Demonstration

Kevin Bjorke

Okay, hello – my name is Kevin Bjorke & I’m here to talk a little about FX Composer
and its place in production processes, both in the abstract and also in a minute we’ll
show you the program in action.

25

Copyright © NVIDIA Corporation 2004

Simple FX Composer 2 Pipeline

FX Composer 2.0

DCC Application
Create scene
Assign materials to objects

Modify shader techniques
Tweak shader properties

COLLADA

COLLADA

Here’s a quick slide showing the simplest sort of use of FX Composer, where data
has come from a DCC app like XSI as a Collada file, it’s tweaked by FX Composer
and a modified COLLADA file moves on downstream.

FX Composer isn’t actually fully constrained to COLLADA usage – you can import
models in other standard formats like OBJ or .X, or roll your own reader quite easily
– FX Composer will write-out a new COLLADA file as a result but the portions of
your scene that are stored in other formats will just be mentioned as references, to
keep the core elements of your production pipeline consistent.

But real production rarely travels perfectly 100% downstream, right?

26

Copyright © NVIDIA Corporation 2004

Plays Well With Others

FX Composer 2.0 COLLADA

Alias Maya 7

Autodesk M+E

3ds max 8

Avid|Softimage

XSI 5.0

COLLADA can move models, rigging, animation, and more freely between
applications, and FX Composer can play very well in that field – this is important
because it lets the program be part of whatever sorts of production approval loops,
stages, and production stages your studio may have in place. And it’s really quite
agnostic about which tools you use external to itself.

27

Copyright © NVIDIA Corporation 2004

Mix & Match APIs

.fx

.cgfx

.dae Cg

FX Composer 2.0

.dae GLSL

.dae HLSL COLLADA

.fx

.cgfx

.dae Cg

.dae GLSL

.dae HLSL

Here’s just a quick chart, we won’t dwell on it, but it shows how the program is
happy in production environments of any sort because it can deal with any API or
combination of APIs.

Our goal isn’t to make a cool tool for creating NVIDIA demos, but to give developers
and artist a genuinely useful channel to create, view, and manage shading in real,
shipping games.

28

Copyright © NVIDIA Corporation 2004

A Thousand and One Uses!

So here’s FX Composer in a role you probably haven’t seen before!

The background window looks pretty typical – the teapot means it’s an empty scene
– but the foreground window is running a complex, XAML-based, Windows Vista-
ready, database-connected animated Point-of-Sale kiosk UI, created and driven
entirely by the Python scripting engine.

Yes, you can edit and view shaders from your favorite DCC application while
shopping.

Okay, a LITTLE disingeuous, but the truth is that FX Composer *is* indeed running
this additional sales-kiosk application via the IronPython scripting extensions. The
point here isn’t to sell MP3 players or SD cards, but to show off the ability of
IronPython and FX Composer to integrate and extend across a variety of different
parts of your workspace, and to have the ability to provide custom UI elements and
operations as needed by whatever your own studio environment might need. You
can use .NET, you can open sockkets and talk to your asset database, the works.

As for Point of Sale displays, I’m not saying that you SHOULD….

29

Copyright © NVIDIA Corporation 2004

IronPython

“Iron” = “I Run On .Net”

http://workspace.gotdotnet.com/ironpython

This acronym is NOT MY FAULT

But it is a pretty swell version of Python, very fast and full-featured and well-
connected. The picture we just looked at was based on a XAML file created in
Microsoft Expression Interactive Designer – you can use any XAML-based editor to
create UIs, or code them up arbitrarily, or just use the Python window in a simple
text-based form.

The Python editor itself is pretty sweet too, with keyword and class-member
completion and so forth, making it relatively easy to navigate through FX
Composer’s hierarchies. The installer includes the standard Python 2.4 libraries,
and you’ll find that with VERY few exceptions, you can use any of them, or the .NET
equivalents, pretty interchangeably.

If you’re already a Python hacker, or you’d like to know moer about python,
definitely check out the IronPython web site, you can get a standalone edition as
well. We’ve already been coding up ideas for tools and extensions to FX Composer
for running in Pythin, for example, I translated the CgFX shader creator, previously
written in Mel for use in Maya, into a Python class for use in both XSI and FX
Composer – took just a couple of hours and now it’s useful and general for ever.

30

Copyright © NVIDIA Corporation 2004

Integrated Shader Profiling

Convenient tweak-and-profile workflow to tune
shaders

Integrated NVShaderPerf 2.0 gives access to:
Performance across multiple GPUs and drivers
Assembly output
Vertex and pixel throughput
Cycle count
Register usage

Coming Soon

This feature is crucial for production TDs and engine programmers and if you’re
used to it from FX Composer 1.x you know what I mean. Again, I won’t dwell on this
slide since Jeff Kiel gave a complete talk on NVShaderPerf just a few minutes ago
(also available on the NVIDA website! http://developer.nvidia.com/), but an
integrated panel for shader perf analysis is a key part of why FX Composer is
useful, and it’s something that is a unique part of pipelines that include FX
Compooser 2

31

Copyright © NVIDIA Corporation 2004

Let’s take a look at bringing up Mike in Maya and FX Composer 2

32

Copyright © NVIDIA Corporation 2004

Mike was animated in Maya originally, but the steps here would be much the same
in any other DCC application

33

Copyright © NVIDIA Corporation 2004

…shaded…

34

Copyright © NVIDIA Corporation 2004

Mike was originally made and textured within Maya, so he has Maya materials but
no realtime shading. So we’re going to export him and assign new materials in FX
Composer

(Quick aside: the shaders we will use in the sample were actually generated to
match Maya’s! The Mel scripts for CgFX, available for some time in the CgFX
toolbar, have been ported to Python & were used to generate the appropriate
templates, before being further tweaked by hand.)

35

Copyright © NVIDIA Corporation 2004

I just want to shade Mike so I’ve made a set containing just the parts I want to
export

36

Copyright © NVIDIA Corporation 2004

…and I “export” to COLLADA the same as I might to any other format.

So let’s switch to FX Composer

37

Copyright © NVIDIA Corporation 2004

I can just drag and drop my new .DAE COLLADA file onto the FX Composer scene
window and Mike will load.

Wireframe means materials are assigned to those surfaces, but those materials
have no volid effects for the current profile (which in this illustration is “PS3-Cg”)

We can similarly drag effect file from the Windows Explorer onto surfaces, where
they’ll be automatically assigned, or into the blank areas or the Project Explorer,
where they’ll be defined as effects (and then we can assign them to materials as a
second step – select the material and right-click to see “Assign Effect….”)

38

Copyright © NVIDIA Corporation 2004

Almost all parts assigned…. You may have to roll-around the camera for small
parts, or just use the Project Explorer to get at the materials and effects by name

39

Copyright © NVIDIA Corporation 2004

All Devices Have Technique Lists

Note the debug techniques… optional but handy

40

Copyright © NVIDIA Corporation 2004

Assigning extra effects – switching to DirectX view, we can see that the model is still
in red wireframe – no effect techniques are defined for THIS profile. So let’s add
some.

I’ve popped-free the Project Explorer pane so I have more working space, and I can
add additional effect files (CgFX or HLSL FX) so that the effect can be valid in
multiple profiles.

41

Copyright © NVIDIA Corporation 2004

Technique-a-Rama

Each material will have
a list of techniques for
each render device
(here they are all the
same, but it’s not
required!) and all will
share the material
parameters

Here’s a closeup of a fully populated scene valid for all current profiles.

42

Copyright © NVIDIA Corporation 2004

But instead of looking at slides, let’s do this again right here!

Mike has lots of parts, so for the sake of a quick demo I’m going to pick a frame
where his mouth is closed (so I can ignore his teeth and tongue) and just export his
head, eyes, and helmet.

Let’s load that result and try it out!

43

Copyright © NVIDIA Corporation 2004

DO
Try This
At Home

Let’s start with a fresh FX Composer 2, our fresh Mike head model (“MikeBust”) and
begin….

44

Copyright © NVIDIA Corporation 2004

Demo – See Notes for All the Steps!

PART ONE
1. Start FX Composer 2
2. Resize so that we can see Windows Explorer windows, too
3. Drag-n-drop mikebust.dae into TEXT window – see syntax highlights etc – close

it (just looking)
4. Drag MikeBust dae again – onto the scene pane. It will load & show red

wireframes
5. Select different render devices – settle on DirectX
6. Find fx Shaders in the Windows explorer – dxFace fdxEye-Left dxHelmet
7. Drag dxHelmet onto helmet
8. Drag dxFace onto face
9. Eyes are tiny, so drag onto blank area or into the Project Explorer pane
10.Look at proj explorer – see the effects and materials
11.Select eyes material, and Assign “dxEye-left” effect
12.Rotate around in the scene view by dragging while hold-down “Alt”
13. In and out zoom with the mouse scroll wheel
14.Make scene pane big… double-click on the title bar and then resize.

Double0click agaion to put it back & vice versa
15.Zoom extents on eyes – click on an eye to select, then press zoom extents on

the scen pane toolbar
16.Zoom extents on the whole scene

45

Copyright © NVIDIA Corporation 2004

Demo – See Notes for All the Steps!

PART TWO
1. Select the face in the scene pane, and zoom on it
2. Look at assigned techniques for this in the Project Exlorer
3. Show debug techniques by clicking the radio buttons.
4. Go back to “main” technique
5. Select material parameters
6. Collapse textures in the properties pane
7. Roll bump and sub rolloff sliders
8. Change subcutaneous color by clicking the color and then the edit button
9. Zoom back out in the scene pane. WAY out.
10.Tools->create point light. New light is already the selected object
11.Drag it around near mike – press “w” to get the move manipulator
12.Materials properties on “Face” – click the “light0 pos” edit button and assign to

“point light”
13.Connect each material to this light
14.Wow bright! Move light around until it’s a good brightness

46

Copyright © NVIDIA Corporation 2004

Demo – See Notes for All the Steps!

PART THREE
1. Select dxface effect in the project explorer, and right-click for “add effect file”
2. Import face.cgfx – give it a second or two to compile
3. Look at new list of files under this effect
4. Double-click file – text editor appears – note hilighting etc
5. Switch to the head material – hey we have new techniques! Note properties are already set!
6. Switch to PC-OGL and PS3 views to see what’s defined and what’s not
7. Back to face effect
8. Convert face.cgfx to colladafx – select the cgfx and right click “convert to COLLADA FX…”
9. Note that imported effect go smaller, imported shader grew, and effects ar enow managed by

collada
10. Peel-off ps3 pane as its own window, note dx is still rendering!
11. Assign other ogl effects just as we did for “face” – each window can have a different technique

selected
12. Select the helmet
13. Drag python window to main pane - watch how pressing [tab] can help you when you type:

from fxcapi import *
Tra[tab]nslate(0,2,0)
Undo()
import FX Composer.Scene
dir(FXCom[tab]poser.Sce[tab]ene)

14. Drag-on post_kuwahara.fx (or any other HLSL full-screen effect) onto DX window – cool huh?
Note the new material has a checkbox to enable/disabble it

15. Keep screwing around! Go crazy layering effects and trying things.

47

Copyright © NVIDIA Corporation 2004

Thanks for coming to see this new tool!

Be sure to contact us for any ideas, schedules, and needs you might have.

