
NVIDIA OpenGL Update

Simon Green

Copyright © NVIDIA Corporation 2004

Overview

SLI
How it works
OpenGL Programming Tips
SLI Futures

New extensions
NVX_instanced_arrays – OpenGL instancing!
EXT_timer_query

Copyright © NVIDIA Corporation 2004

What is SLI?

Allows scaling
graphics performance by
combining multiple GPUs
in a single system
Works best with NVIDIA
nForce motherboards
Improves rendering
performance up to 2x with
two GPUs

Copyright © NVIDIA Corporation 2004

SLI-Ready PCs affordable for Everyone

nForce4 SLI Motherboard +
Dual GeForce 6800 GTs

nForce4 SLI Motherboard +
GeForce 6600 LE

Copyright © NVIDIA Corporation 2004

Quad SLI

4 GPUs is better than 2!
2 cards, each with 2 GPUs

Copyright © NVIDIA Corporation 2004

SLI Notebooks

Copyright © NVIDIA Corporation 2004

0.8 1 1.2 1.4 1.6 1.8 2

Colin McRea 5

Painkiller: Battle Out of Hell

3DMark03

3Dmark05

Doom 3

X2

Ground Control 2

Splinter Cell Chaos Theory

Chronicles of Riddick

Code Creatures

Thief: Deadly Shadows

Brothers in Arms

Project Snowblind

GeForce 7800 GTX GeForce 7800 GTX SLI

Tests run on AMD FX 55
with 1GB memory

1600x1200, 4X/8X

SLI Game Performance Scaling

Copyright © NVIDIA Corporation 2004

How SLI Works

Plug multiple GPUs into motherboard
Have to be same model currently

NVIDIA driver reports as one logical device
Video memory does NOT double

Video scan out happens from one board
Bridge connector transmits digital video between boards

Copyright © NVIDIA Corporation 2004

SLI and Game Development

Developing a game now takes 2 years or more
CPU performance doubles (or less)
GPU performance quadruples

CPU / GPU balance shifts
Worse: CPU-hungry modules are developed later
AI, physics, full game play

SLI allows you to preview future GPU performance
now

Copyright © NVIDIA Corporation 2004

SLI Rendering Modes

Compatibility mode
Only uses one GPU
No SLI benefits

Alternate frame rendering (AFR)
Split frame rendering (SFR)
SLI AA
SLI Stereo?

Copyright © NVIDIA Corporation 2004

AFR

GPUs work on alternate frames in parallel

Scan-out toggles which framebuffer to read from

GPU 0:GPU 0:

GPU 1:GPU 1:

1

2

…3

4 …

Copyright © NVIDIA Corporation 2004

AFR Advantages

Advantages
All work is parallelized

Scales geometry and pixel fill performance
Preferred SLI mode

Disadvantages
Requires pushing data to other GPU if frame is not self-
contained
For example, if application updates a render-to-texture
target only every other frame

Copyright © NVIDIA Corporation 2004

GPUs work on the same frame
For two GPUs

GPU 0 renders top region
GPU 1 renders bottom region

Scan-out combines framebuffer data

21 3 …

SFR

GPU 0

GPU 1

Copyright © NVIDIA Corporation 2004

SFR Advantages

Driver load-balances by changing region size
Based on time each GPU took to render

Driver clips geometry to regions
Avoids both GPUs processing all vertices
But not perfect

Still requires sharing data between GPUs
E.g., render to texture

Copyright © NVIDIA Corporation 2004

SFR Compared to AFR

SFR works even when few frames are buffered
Or when AFR otherwise fails

In general, SFR has more communications
overhead

Applications with heavy vertex load benefit less
from SFR

Copyright © NVIDIA Corporation 2004

Overview: Things Interfering with SLI

CPU-bound applications
Or vertical-sync enabled

Applications that limit the number of frames
buffered

Communications overhead

Copyright © NVIDIA Corporation 2004

SLI cannot help

Reduce CPU work

Move CPU work onto the GPU
See http://www.gpgpu.org

Don’t deliberately throttle frame-rate

CPU-Bound Applications

http://www.gpgpu.org/

Copyright © NVIDIA Corporation 2004

V-Sync

Enabling vertical-sync limits frame rate to multiples
of the monitor refresh rate

Copyright © NVIDIA Corporation 2004

Limiting Number of Frames Buffered

Some apps allow at most one frame buffered
To reduce lag
Via occlusion queries
Don’t read back-buffer - this causes CPU stall

Breaks AFR SLI

SLI is faster anyway
e.g. 2 GPU SLI systems ~2.0x less lag

Copyright © NVIDIA Corporation 2004

Why Reading the Back Buffer Is Bad

Frame n+1Frame n+1Frame nFrame n ……

Back buffer read: Back buffer read:
wait for GPU to finish rendering wait for GPU to finish rendering

CPUCPU

GPUGPU

CPUCPU

GPUGPU

Copyright © NVIDIA Corporation 2004

OpenGL SLI Tips

Limit OpenGL rendering to a single window
child windows shouldn’t have OpenGL contexts

Request pixel format with PDF_SWAP_EXCHANGE
tells driver that app doesn’t need the back buffer contents
after SwapBuffers()

Avoid rendering to FRONT buffer
use overlays instead on Quadro GPUs

Copyright © NVIDIA Corporation 2004

Offscreen Rendering and Textures

Limit P-buffer usage
Often requires broadcasting rendering to both GPUs

Use render-to-texture rather than
glCopyTexSubImage

glCopyTexSubImage requires texture to be copied to both
GPUs
Use FBO or P-buffers instead

Limit texture working set
Textures have to be stored on both GPUs
Don’t download new textures unnecessarily

Copyright © NVIDIA Corporation 2004

Geometry

Use Vertex Buffer Objects or display lists to render
geometry

Don’t use immediate mode
Reduces CPU overhead

Render the entire frame
Don’t use use glViewport or glScissor
Disables load balancing in SFR mode, and hurts
performance in AFR mode

Copyright © NVIDIA Corporation 2004

More OpenGL SLI Tips

Limit read-backs
e.g. glReadPixel, glCopyPixels
causes pipeline to stall

Never call glFinish()
doesn’t return until all rendering is finished
prevents parallelism

Avoid glGetError() in release code
Causes sync point

Copyright © NVIDIA Corporation 2004

How Do I Detect SLI Systems?

NVCpl API:
NVIDIA-specific API supported by all NV drivers

Function support for:
Detecting that NVCpl API is available
Bus mode (PCI/AGP/PCI-E) and rate (1x-8x)
Video RAM size
SLI

Copyright © NVIDIA Corporation 2004

NVCpl API SLI Detection

SDK sample and full documentation available

HINSTANCE hLib = ::LoadLibrary("NVCPL.dll");

NvCplGetDataIntType NvCplGetDataInt;
NvCplGetDataInt =

(NvCplGetDataIntType)::GetProcAddress(hLib,
"NvCplGetDataInt");

long numSLIGPUs = 0L;
NvCplGetDataInt(NVCPL_API_NUMBER_OF_SLI_GPUS,

&numSLIGPUs);

Copyright © NVIDIA Corporation 2004

Forcing SLI Support In Your Game

Use NVCpl
NvCplSetDataInt() sets
AFR, SFR, Compatibility mode
See SDK sample

Modify or create a profile:
http://nzone.com/object/nzone_sli_appprofile.html
End-users can create profile as well

http://nzone.com/object/nzone_sli_appprofile.html

Copyright © NVIDIA Corporation 2004

SLI Performance Tools

NVPerfKit has support for SLI
Provides performance counters for

Total SLI peer-to-peer bytes
Total SLI peer-to-peer transactions

Above originating from
Vertex/index buffers: bytes and transactions
Textures: bytes and transactions
Render targets: bytes and transactions

Copyright © NVIDIA Corporation 2004

What is Instancing?

Rendering multiple instances of a given geometry
Some attributes can vary across instances

Transformation matrix
Color

Examples
Trees in a forest
Characters in a crowd
Boulders in a avalanche
Screws in an assembly

Copyright © NVIDIA Corporation 2004

Instancing Methods in OpenGL

Send transform as vertex program constants
Relatively slow
Can also pack several transforms into constant memory
and index in vertex program

Send transform using immediate mode texture
coordinates (“pseudo instancing”)

Usually much faster (glTexCoord calls are inlined)
Requires custom vertex program
Can use glArrayElement to set current texture coordinates
from a vertex array (not efficient on NV hardware)

NVX_instanced_arrays
Single draw call
Fastest

Copyright © NVIDIA Corporation 2004

NVX_instanced_arrays

Allows rendering multiple instances of an object
with a single draw call
Similar to Direct3D instancing functionality
OpenGL draw call cost is lower than Direct3D, but
still gives a significant performance benefit
Combined with render-to-vertex array, can be used
for controlling object transformations on the GPU
Performance is dependent on CPU speed, GPU
speed, number of objects and number of vertices
per object

Will improve on next generation GPU hardware

Copyright © NVIDIA Corporation 2004

OpenGL Instancing Performance

Verts/object Constants
(fps)

Texcoords
(fps)

Instancing
(fps)

8 205 323 560

24 200 266 440

120 138 135 155

60 183 190 246

220 72 77 77

8192 objects, Quadro FX 4500, P4 3.4 GHz

Copyright © NVIDIA Corporation 2004

NVX_instanced_arrays

Allows rendering an array of primitives multiple
times, while stepping specified vertex attribute
arrays only once per N objects
Only supports generic attribute arrays
No immediate mode
Warning – experimental extension -API may change!
Typically 3 attribute arrays are used to store a 3x4
transformation matrix

Attribute divisor is set to 1 for these arrays
Custom vertex program transforms geometry from object
to world space based on input attributes

Copyright © NVIDIA Corporation 2004

NVX_instanced_arrays API

void VertexAttribDivisorNVX(uint attrib,
uint divisor);

Specifies rate at which to advance attribute per object
0 = disabled
Attribute 0 (position) cannot be changed
Future – fractional divisor to allow geometry
amplification?

void DrawArraysInstancedNVX(enum mode, int start,
sizei count, sizei primCount);

void DrawElementsInstancedNVX(enum mode, sizei count,
enum type, const void *indices, sizei primCount);

Renders primCount instances of specified geometric
primitives, using attribute divisors

Copyright © NVIDIA Corporation 2004

DrawArraysInstancedNVX Pseudocode

for (instance = 0; instance < primCount; instance++) {
Begin(mode);
for (vertex = 0; vertex < count; vertex++) {

for (attrib = 1; attrib < MAX_ATTRIB; attrib++) {
if (ArrayAttribEnabled[attrib]) {

if (InstanceDivisors[attrib] > 0) {
offset = instance / InstanceDivisors[attrib];

} else {
offset = start + vertex;

}
offset *= CookedAttribStride[attrib];
VertexAttribvFunc[attrib](

VertexAttribPointers[attrib] + offset);
}

}
if (ArrayAttribEnabled[0]) {

offset = start + vertex;
offset *= CookedAttribStride[0];
VertexAttribvFunc[0](

VertexAttribPointers[0] + offset);
}

}
End();

}

Copyright © NVIDIA Corporation 2004

Standard Rendering Loop
// load vertex arrays and transform data
…

for(int i=0; i<nobjects; i++) {
// send transformation as texture coordinates
glMultiTexCoord4fv(GL_TEXTURE0, &transform_data[0][i*4]);
glMultiTexCoord4fv(GL_TEXTURE1, &transform_data[1][i*4]);
glMultiTexCoord4fv(GL_TEXTURE2, &transform_data[2][i*4]);

// draw instance
glDrawElements(GL_TRIANGLES, nindices, GL_UNSIGNED_SHORT, indices);

}

Copyright © NVIDIA Corporation 2004

Using Instancing
// set vertex array pointers
…

// enable transform attribute arrays and set divisors
glEnableVertexAttribArrayARB(8); // texcoord0
glVertexAttribDivisorNVX(8, 1);
glEnableVertexAttribArrayARB(9); // texcoord1
glVertexAttribDivisorNVX(9, 1);
glEnableVertexAttribArrayARB(10); // texcoord2
glVertexAttribDivisorNVX(10, 1);

// draw all instances at once
glDrawElementsInstancedNVX(GL_TRIANGLES, nindices,

GL_UNSIGNED_SHORT, indices, nobjects);

glDisableVertexAttribArrayARB(8);
glVertexAttribDivisorNVX(8, 0);
glDisableVertexAttribArrayARB(9);
glVertexAttribDivisorNVX(9, 0);
glDisableVertexAttribArrayARB(10);
glVertexAttribDivisorNVX(10, 0);

Copyright © NVIDIA Corporation 2004

HavokFX Instancing Results

Readback
(fps)

Instancing
(fps)

Instancing /
Readback

4096 bricks 240 280 1.17

8000 bricks 130 150 1.15

27000 bricks 40 46 1.15

5000 boulders 173 223 1.29

10000 boulders 90 114 1.27

30000 boulders 31 41 1.32

Copyright © NVIDIA Corporation 2004

GPU Timing

Timing is important for performance tuning
How can you improve something if you can’t measure it
accurately?

Problem with timing the GPU is that it is
asynchronous and has a deep pipeline

There’s no way to know if a particular command has
completed before reading the timer

Usual solution is to insert glFinish() commands
Guarantees that all rendering commands have completed,
but stalls pipeline and changes performance!

Copyright © NVIDIA Corporation 2004

EXT_timer_query

Provides a method for timing a sequence of
OpenGL commands, without stalling the pipeline
Based on the query object mechanism introduced
by the occlusion query extension
glBeginQuery()

Timer starts when all prior commands have completed
glEndQuery()

Timer stops when all prior commands have completed
Measures total time elapsed (driver + hardware)

Measured in nanoseconds (10-9 seconds)
32 bit counter can represent about 4 seconds maximum

Introduces GLuint64 type to allow 64 bit counters

Copyright © NVIDIA Corporation 2004

Code Example
GLint queries[N];
glGenQueries(N, queries); // generate query objects

for(int i=0; i<N; i++) {
glBeginQuery(GL_TIME_ELAPSED_EXT, queries[i]); // Start query
// Draw object i
glEndQuery(GL_TIME_ELAPSED_EXT); // End query

}

// Wait for all results to become available
// (should really only wait for previous frame’s results)
int available = 0;
while (!available) {

glGetQueryObjectiv(GL_QUERY_RESULT_AVAILABLE, queries[N-1],
&available);

}

// See how much time the rendering of object i took in nanoseconds
GLuint64EXT timeElapsed;
for (i = 0; i < N; i++) {

glGetQueryObjectui64vEXT(queries[i], GL_QUERY_RESULT, &timeElapsed);
// do something with result

}

Copyright © NVIDIA Corporation 2004

Questions?

GPU Programming Guide:
http://developer.nvidia.com/object/gpu_programmin
g_guide.html

http://developer.nvidia.com

Thanks: Matthias Wloka, Jason Allen, Michael Gold

http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/

	NVIDIA OpenGL Update
	Overview
	
	What is SLI?
	Quad SLI
	SLI Notebooks
	SLI Game Performance Scaling
	How SLI Works
	SLI and Game Development
	SLI Rendering Modes
	AFR
	AFR Advantages
	SFR
	SFR Advantages
	SFR Compared to AFR
	Overview: Things Interfering with SLI
	CPU-Bound Applications
	V-Sync
	Limiting Number of Frames Buffered
	Why Reading the Back Buffer Is Bad
	OpenGL SLI Tips
	Offscreen Rendering and Textures
	Geometry
	More OpenGL SLI Tips
	How Do I Detect SLI Systems?
	NVCpl API SLI Detection
	Forcing SLI Support In Your Game
	SLI Performance Tools
	What is Instancing?
	Instancing Methods in OpenGL
	NVX_instanced_arrays
	OpenGL Instancing Performance
	NVX_instanced_arrays
	NVX_instanced_arrays API
	DrawArraysInstancedNVX Pseudocode
	Standard Rendering Loop
	Using Instancing
	HavokFX Instancing Results
	GPU Timing
	EXT_timer_query
	Code Example
	Questions?

