
Advanced Visual Effects with Direct3D

Presenters: Mike Burrows, Sim Dietrich, David Gosselin, Kev 
Gee, Jeff Grills, Shawn Hargreaves, Richard Huddy, Gary 
McTaggart, Jason Mitchell, Ashutosh Rege and Matthias 
Wloka 



All About Anti-Aliasing

• What is it?

• Explanation of Multi-sampling

• Problems & Solutions



What is Anti-Aliasing?
• On current consumer cards, it’s 

– Super-sampling
• Just render the scene to a 2x2 larger back & 

zbuffer & filter down
– Multi-sampling

• Like the above, but compute coverage at a 
higher frequency than shading

– A Mix of the two, 2x multi and 2x super-
sampling simultaneously



4x Super- vs 4x Multi-Sampling



Note how the super-sampled Image has different 
shading results for each 2x2 area, and the multi-

sampled one has only one color per 2x2.

4x Super                  4x Multi



Multi-sampling saves performance by decoupling 
shading and coverage computation frequency

4x Super                  4x Multi



4X Multi-Sampling on a 1x1 
Frame Buffer

Step 1 : Render Scene to 2x2 Larger Back 
Buffer

Coverage Sample Locations



4X Multi-Sampling on a 1x1 
Frame Buffer

Triangles that cross at 
least one sample location 
are rasterized, Z/Stencil 
tested at each covered 
sample location 

The Yellow triangle has    
2 Z & Stencil values

Those triangles that cover 
> 1 sample point are still 
shaded only ONCE



4X Multi-Sampling on a 1x1 
Frame Buffer

Logical Back Buffer Actual Back Buffer



4X Multi-Sampling on a 1x1 
Frame Buffer

2x2 Larger Back Buffer

1X Sized Front Buffer

2x2 Down-Filter at 
EndScene



Things that don't get AA'd with 
Multisampling

• Render to Texture – can’t assume it’s color
• Clip planes – may be implemented in raster
• Full screen quads
• MRT
• Pixel Shaders

– Z-replace shaders
– Texkill
– Alpha-Test



Things that will Break or Slow 
Down AA

• Back Buffer Locking
• StretchRect()

– Can Force a down-sample

• Z Buffer Locking
– Can Force a ‘down-sample’

• Applying AA Zbuffer to Aliased Texture
– How is this supposed to work?
– Just Re-render your z buffer to be sure

• Multiple EndScenes()



How to Enable Multi-Sampling

• During CreateDevice()

PresentParameters.MultiSampleType



Selecting Multisample Antialiasing
• Control this in your application

– Use the API!
– Let your users set the quality

Nonmaskable

8 Quality 
Levels

Multisample 
Type

Unless you’re using 
MULTISAMPLEMASK, 
you only care about 
these

None 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



Multi-Sample Mask

• Lets you selectively update each individual 
multi-sample

• Not supported if 

d3dcaps9.RasterCaps & 
D3DPRASTERCAPS_STRETCHBLTMULTISAMPLE



Questions about Multisampling

?



Issues & Solutions

• Texture Atlases
• Video RAM Usage
• Format Incompatibility
• Variable Bandwidth
• MRT Incompatibility



Issue : Texture Atlases

• Games with Texture Atlases can have 
problems with flashing texels at certain 
angles
– Like packed lightmaps
– Multiple Character skins per texture page



4X Multi-Sampling & Texture 
Atlases

• Coverage Samples

Texture Sample



• Although this triangle does cross a 
sample location - this triangle fails to 
cross the pixel’s texture sampling 
position



• …so, the uv coordinate is extrapolated 
outside the triangle‘s uv gamut



• If using texture atlases, this can cause 
an incorrect texel to be selected from a 
different chart

Texture Atlas



How Bad Is It?
• Well, all games ever shipped have had this 

problem with multi-sampling 

• So it’s not fatal

• But artifacts can be seen on triangles edge-
on to the view

• Gets worse if atlas contains many different 
colors



Enter the Centroid

• DirectX9 introduced Centroid Sampling 
to address this issue
– Basically, if a texel sample falls outside of 

the triangle’s valid UV gamut, it’s snapped 
to be inside the UV gamut



• Centroid sampling forces the interpolated 
parameter to stay in the triangle’s valid uv
gamut – at the centroid of the covered 
samples

Texture Atlas



Other Solutions
• Centroid is available on some pixel shader 

2.0+ hw
• Other options include

– Clamping texture coordinates in the pixel shader 
to chart’s uv rect

– Using a separate clamped mask texture 
corresponding to chart

– Live with it, but store similarly colored lightmaps
together

– Add a border to each chart via dilation filter or 
calculation outside of chart gamut



Issue : Greater Video Ram
• Multi-sample AA requires more video ram 

than aliased rendering
• Simple formula for 4X AA often wrong :

front_buffer_size + 

4 * front_buffer_size + 

4 * z_buffer_size

• Exactly how much is not obvious, and can 
depend on IHV, GPU and driver



More Memory Than Anticipated

• There may be 2 large back buffers
– Some HW scans out of super-buffer using DAC

• There may be > 1 front-buffer-sized back buffer
– To hold filtered, but not yet displayed buffers

• Best bet is to query the AvailableVidMem() after 
device creation in case AA is forced on



Issue : Sparkly Alpha Test
• Using alpha test without alpha blended 

edges looks noisy

• Especially apparent with trees

• Multi-sampling only samples once per 
final pixel, not per-sample, so alpha test 
is binary



Solution : Custom Super-
Sampling

• Use multi-sample masking to render the 
leaves of an alpha tested tree several 
times

• Each render is offset a half pixel or so
• Not Z correct, but for leaves, ok



Solution : Custom Super-
Sampling

• The blending between the 4 versions of 
the leaves happens at the normal 
downfilter time :

– Either Present()

– Or StretchRect()



Issue: fp Render Target 
Incompatibility

• Multisampling doesn’t work with fp16 or 
fp32 render targets
– It could, just a limitation of current HW

• If you want higher quality, you can do 
your own super-sampling



Solution : Custom AA
• You can perform your own edge anti-

aliasing one of several ways
– Render your scene to a 2x2 larger texture, 

with 2x2 larger z/stencil buffer then bilinear 
filter it down to the back buffer

• Ordered Grid Sampling – Not Ideal
• Performs Shader AA also
• More Expensive than HW Multisampling
• Needs no extra render passes of scene 

geometry



Custom AA
Use a rotated back buffer for Rotated 
Grid AA
Sampling
Unrotate
during Down-
Filtering
Draw HUD after 
downfilter



Custom AA

• Render your scene multiple times into 
different buffers, then average together 
at EndScene() via pixel shader
– ala 3dfx T-Buffer
– Requires multiple scene passes
– Needs more than 1 Z buffer



Issue : Variable BW Costs

• During low-action scenes, it would be 
nice to have very high AA levels

• During fast-action scenes, especially w/ 
alpha particles & sounds, frame rate is 
more important than image quality

• How to balance these conflicting 
desires?



Solution : Dynamic AA

• Variation on Custom AA

• Allocate 2x2 larger back buffer for AA

• In high frame rate scenes, just perform 
normal 4X multi-sampling, but perform 
your own downfilter using StrechRect()



Dynamic AA
• During low-frame rate periods, reduce your 

viewport size on the 2x2 larger back buffer

• Still StretchRect() to same sized buffer

• Render HUD Afterwards

• Keeps framerate more even



• Back Buffer Shrinks w/ FPS
• Down-Filter to Constant Front Buffer Size

70 fps

25 fps

15 fps



Test Results
• Looked good

– Except for text, which crawled
– Just render HUD after the StretchRect()

• Variable framerate smoothed out
– Non-integer AA samples don’t quite look as 

good ( a bit blurry )
• But restricting the technique to only choose 

2x1, 2x2, 3x2, etc. doesn’t give enough options
– Only helps if b/w or shader bound



Issue : Post-Processing w/ AA

• Can’t get have a Multi-Sampled Render 
Target Texture

• Can’t blt from Multi-Sample Back Buffer 
to texture in DirectX 9.0a



Solution : DirectX 9.0b & 
StretchRect

• The DirectX 9.0b+ runtimes introduced 
the ability to StretchRect() from a 
multisampled back buffer to an 
offscreen texture

• This can then be manipulated w/ glows, 
filters, HDR, etc.



Issue : Deferred Lighting
• One of the main ideas about deferred 

lighting is to render the light bounds as 
geometry during lighting passes

• This is instead of rendering the scene 
objects again, saving vertex & CPU

• You can’t have a multi-sampled MRT on 
current HW



Deferred Lighting w/o MRT

• So, if we want AA, we either have to 
perform our own custom AA

• Or, we can try to mix Deferred Lighting 
and Multi-Sampling
– Allocate a 4x Multi-Sample Back Buffer
– Create offscreen surfaces for normal, 

depth, etc.
• What size? 1X, or 4X?



Super-Sampled Lighting?
• Ideally, we would want to treat the multi-sample 

back buffer as super-sampled
• That way you could 2x2 over-sample the lighting
• But, you can’t get at the multi-sample buffer this 

way
• And there’s no guarantee the HW stores it as a 

contiguous buffer
• Also exact multi-sample locations are unknown



Back To StretchRect()?

• So, we’re forced to Down-Filter to a 1X 
buffer for each term
– Diffuse & Specular
– Normal – Must Renormalize
– Depth?
– Triangle Edges aren’t really correct



Broken Edges
• Multi-sampling effectively performs

super-sampling when
the primitive covers
only some sample
locations.
Filtering these 4
values before lighting is
just wrong.



Broken Edges
• The only way to selectively update the 

right sub-pixel positions is to re-render 
the scene geometry!

• Thus defeating one of the main points of 
Deferred Shading

• Rendering the Light geometry on top of 
the down-filtered normals, depths, etc is 
wrong.



So, MultiSampling & Deferred 
Shading Don’t Get Along

• You really need to re-render your scene 
geometry every time you want to light it

• Or face, color, depth and normal 
discontinuities



Questions?

sdietrich@nvidia.com


