
GPGPU: Beyond GraphicsGPGPU: Beyond Graphics

Mark Harris, NVIDIA



What is GPGPU?

• General-Purpose Computation on GPUs
– GPU designed as a special-purpose coprocessor
– Useful as a general-purpose coprocessor

• The GPU is no longer just for graphics
– It is a massively parallel stream processor
– 32-bit float support
– Flexible programming model
– Huge memory bandwidth



What is GPGPU?

• Much academic research in this area
– Cellular automata, fluid dynamics
– Cloth / hair simulation, soft bodies
– Particle systems, collision detection
– Global illumination, computer vision
– Computational Geometry
– www.GPGPU.org



Outline

• Motivation: Why GPUs?
• Mapping computational concepts to GPUs
• Tricks of the trade: Branching Techniques
• Current Limitations
• New OpenGL Functionality
• The Future



Why GPUs?



Why GPUs? Economics, Really.

• Graphics is “embarrassingly parallel”
– Data-parallel computation: vertices + pixels

• Millions of GPUs ship every month
– Largely thanks to multi-billion [$,£,€,¥] 

game industry
• Result

– GPUs are inexpensive, but powerful
– Low cost per GFLOP



NVIDIA CONFIDENTIAL

Compound Performance Growth Rates

2.32.197 – 03AA 32-bitNVIDIA

2.22.284 – 96Depth BufSGI

2.41.897 – 02No AANVIDIA

1.31.884 – 96Flat ColorSGI

CAGR
Frag / sec

CAGR
Tri / secPeriodMeasured

Significantly above Moore’s Law

CAGR 2.0 à 1000x per decade
Slide courtesy of Kurt Akeley



NVIDIA CONFIDENTIAL

Semiconductor Scaling Rates

From: Digital Systems Engineering, Dally and Poulton

31.28Aggregate off-chip bandwidth

71.11750Pins per package

1.31.71Die-length wire delay / gate delay

1.00Device-length wire delay

1.31.71Capability (grids / gate delay)

(5)0.87150 pSGate Delay

1.751.491 BMoore’s Law (grids on a die)**

Years to 
Double (Half)

Yearly 
Factor2001 ValueParameter

** Ignores multi-layer metal, 8-layers in 2001
Slide courtesy of Kurt Akeley



NVIDIA CONFIDENTIAL

Communication is the Key to Performance

Move data faster (optimize speed)
Point-to-point wiring
Advanced protocols (e.g. clock in data)
Wide interfaces (256-bit GPUs)

Move data less (optimize locality)
Algorithm
Architecture (e.g. pipeline GPU)
Cache data

Slide courtesy of Kurt Akeley



NVIDIA CONFIDENTIAL

Microprocessors Are All Cache!

95372.5

33252.25

10242.0

2701.75

581.5

Growth in DecadeCAGR

Locality optimized 
using cache memory

CPU

GPU

Slide courtesy of Kurt Akeley



What does this mean for games?

• CPU bound unless you balance the load!
• Start planning uses for GPU power now!

– Obvious: more graphics detail
– Not-so obvious: 

• Physics simulation, 
• global illumination
• AI path finding?
• Procedural animation

[James 2001], 
[Elder Scrolls III: Morrowind]



Goal: Harness GPU Power
• The cost of continued performance growth

– Specialization allows constraints
– Constraints enable optimization, but
– Makes generalization non-trivial

• GPU not as easy to program as a CPU
– Sometimes mappings are not obvious
– I’ll talk about specific techniques, building 

blocks, and examples



Outline
• Motivation: Why GPUs?
• Mapping computational concepts to GPUs
• Tricks of the trade: Branching Techniques
• Current Limitations
• New OpenGL Functionality
• The Future



Main Computational Resources
• Programmable parallel processors

– Vertex & Fragment pipelines
• Rasterizer

– Mostly useful for interpolating addresses (texture 
coordinates) and per-vertex constants

• Texture unit
– Read-only memory interface

• Render to texture
– Write-only memory interface



Array/Grid Computation
• Common GPGPU computation style

– Textures represent arrays
• Many computations map well to grids

– Matrix algebra
– Image & Volume processing
– Physical simulation
– Global Illumination

• ray tracing, photon mapping, 
radiosity

• Non-grid computations can 
often be mapped to grids



Scatter vs. Gather
• Grid communication

– Grid cells share information



Vertex Processor
• Fully programmable (SIMD / MIMD)
• Processes 4-vectors (RGBA / XYZW)
• Capable of scatter but not gather

– Can change the location of current vertex
– Cannot read info from other vertices
– Can only read a small constant memory

• Future hardware enables gather!
– Vertex textures



Fragment Processor
• Fully programmable (SIMD)
• Processes 4-vectors (RGBA / XYZW)
• Random access memory read (textures)
• Capable of gather but not scatter

– No random access memory writes 
– Output address fixed to a specific pixel

• Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines
– RAM read
– Direct output



CPU-GPU Analogies



GPU Simulation Overview

• Analogies lead to implementation
– Algorithm steps are fragment programs

• Computational “kernels”

– Current state variables accessed from 
textures

– Feedback via Render to texture



Invoking Computation

• Must invoke computation at each pixel
– Just draw geometry!
– Most common GPGPU invocation is a full-

screen quad



Standard “Grid” Computation
• Initialize “view” (so that pixels:texels::1:1)

– glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, outTexResX, outTexResY);

• For each algorithm step:
– Activate render-to-texture
– Setup input textures, fragment program
– Draw a full-screen quad (1x1)



Example: “Disease”
• Chemical reaction-

diffusion simulation
– Generate dynamic 

normal map from the 
result

• Add creepy effects to 
your characters!

[Harris & James, GDC 2003]



Example: Fluid Simulation
• Navier-Stokes fluid 

simulation on the GPU

• GPU Gems article: 
– “Fast Fluid Dynamics 

Simulation on the GPU”



Outline
• Motivation: Why GPUs?
• Mapping computational concepts to GPUs
• Tricks of the trade: Branching Techniques
• Current Limitations
• New OpenGL Functionality
• The Future



Branching Techniques
• Fragment program branches are costly

– No true branching on NV3X & R3X0
– Dynamic branches not cheap in near future

• Better to move decisions up the pipeline
– Replace with math
– Occlusion Query
– Domain decomposition
– Z-cull
– Pre-computation



Branching with OQ
• Use it for iteration termination

– Loop on CPU
• Begin Query
• Render with fragment program

– In fragment program, discard fragments that match 
termination criteria

• End Query
• Terminate if query returns zero pixels

• Can be used for subdivision techniques
– Demo later



Domain Decomposition
• Avoid branches where outcome is fixed

– One region is always true, another false
– Separate FPs for each region, no branches

• Example: 
boundaries



Z-Cull
• In early pass, modify depth buffer

– Write depth=0 for pixels that should not be 
modified by later passes

– Write depth=1 for rest
• Subsequent passes

– Enable depth test (GL_LESS)
– Draw full-screen quad at z=0.5
– Only pixels with previous depth=1 will be 

processed
• Available in future GPUs

– Depth replace disables Z-Cull on NV3X



Pre-computation
• Pre-compute anything that will not 

change every iteration!
• Example: arbitrary boundaries

– When user draws boundaries, compute 
texture containing boundary info for cells

– Reuse that texture until boundaries 
modified

– Future hardware: combine with Z-cull for 
higher performance!



Outline
• Motivation: Why GPUs?
• Mapping computational concepts to GPUs
• Tricks of the trade: Branching Techniques
• Current Limitations
• New OpenGL Functionality
• The Future



Current GPGPU Limitations
• Programming is difficult

– Limited memory interface
– Usually “invert” algorithms (Scatter à Gather)
– Not to mention that you have to use a graphics API…

• Limited bandwidth from GPU to CPU
– PCI-Express will help
– Frame buffer read can cause pipeline flush
– Avoid large & frequent communication to CPU



Outline
• Motivation: Why GPUs?
• Mapping computational concepts to GPUs
• Tricks of the trade: Branching Techniques
• Current Limitations
• New OpenGL Functionality
• The Future



New Functionality Overview
• Vertex Programs

– Vertex Textures: gather
– MIMD processing: full-speed branching

• Fragment Programs
– Looping, branching, subroutines, indexed input 

arrays, explicit texture LOD, facing register

• Multiple Render Targets
– More outputs from a single shader
– Fewer passes, side effects
– “Deferred Computation”



New Functionality Overview
• VBO / PBO & Superbuffers

– Feedback texture to vertex input
– Render simulation output as geometry
– Not as flexible as vertex textures

• No random access, no filtering

– Demos

• PCI-Express
– Faster data download from GPU to CPU



EXAMPLES



Example: Cloth Simulation
• Cloth Simulation

– Simon Green
– Simulation in 

fragment program
– Use PBO/VBO to 

cast texture as 
vertex array for 
rendering



Example: Particle Simulation
• Lecture: “Building A Million Particle System”

– By Lutz Latta, Wednesday at noon, GDC 2004



Example: OQ-based subdivision

• Used in
Coombe et al., “Radiosity on Graphics Hardware”



Example: GPU Radiosity
• Greg Coombe, UNC
• Progressive-refinement radiosity
• Uniform and adaptive solutions
• Hemisphere visibility (not hemicube)



The Future
• Increasing flexibility

– Vertex textures (gather, feedback)
– MRT (side effects)
– Branching (especially in vertex programs)

• Easier programming
– Non-graphics APIs and languages?
– Brook for GPUs

• http://graphics.stanford.edu/projects/brookgpu



The Future
• Increasing power

– More vertex & fragment processors
– GFLOPs, GFLOPs, GFLOPs!

• Fast approaching TFLOPs!
• Supercomputer on a chip 

– Start planning ways to use it!

• Massive multi-GPU Supercomputers?



More Information
• GPGPU news, research links and forums

– www.GPGPU.org
• SIGGRAPH 2004 GPGPU Course

– Wednesday, full-day
– Building blocks, advanced techniques & case studies

• Questions?
– mharris@nvidia.com



developer.nvidia.comdeveloper.nvidia.com
The Source for GPU Programming

Latest documentation
SDKs
Cutting-edge tools

Performance analysis tools
Content creation tools

Hundreds of effects
Video presentations and tutorials
Libraries and utilities
News and newsletter archives

EverQuest® content courtesy Sony Online Entertainment Inc.



GPU Gems: Programming Techniques, GPU Gems: Programming Techniques, 
Tips, and Tricks for RealTips, and Tricks for Real--Time GraphicsTime Graphics

Practical real-time graphics techniques from 
experts at leading corporations and universities

Great value:
Contributions from industry experts
Full color (300+ diagrams and screenshots)
Hard cover
816 pages
Available at GDC 2004

“GPU Gems is a cool toolbox of advanced graphics 
techniques. Novice programmers and graphics gurus 
alike will find the gems practical, intriguing, and 
useful.”
Tim Sweeney

Lead programmer of Unreal at Epic Games

“This collection of articles is 
particularly impressive for its depth and 
breadth. The book includes product-
oriented case studies, previously 
unpublished state-of-the-art research, 
comprehensive tutorials, and extensive 
code samples and demos throughout.”
Eric Haines

Author of Real-Time Rendering

For more, visit:For more, visit:
http://http://developer.nvidia.com/GPUGemsdeveloper.nvidia.com/GPUGems



Extra Slides Begin Here



GL_NV_vertex_program3
• Vertex Textures (TEX, TXP)

– Up to 4 on NV40
– Mipmaps (TXB, TXL: bias or explicit LOD)
– GL_NEAREST filtering

• Indexed arrays of input / output attributes
• One additional condition code (2 total)
• PUSHA / POPA instructions

– For subroutine call / return

• NV40: MIMD – full-speed branching.



GL_NV_fragment_program2

• Data-dependent branching
– Static / dynamic branching
– Fixed-iteration-count loops
– Conditional loop break (BRK)

• Subroutine calls
• Explicit LOD texture lookup (TXL)
• Indexed input arrays
• Facing register (front / back)



Multiple Render Targets

• Write multiple RGBA results in FPs
• Reduce # passes by writing side-effects

– Avoid duplicate computation computation

• “Deferred computation”
– Like deferred shading, but for GPGPU

• See GL_ATI_draw_buffers spec



VBO / PBO & Superbuffers

• Flexible video memory allocation
• Vertex buffers and pixel buffers
• Specify usage at allocation time

– Driver can optimize location and format

• Multi-use buffers possible
– Closes the loop between fragment and 

vertex units!



PCI-Express

• With AGP, GPU to CPU transfers slow
– Asymmetric bandwidth

• PCI-Express is symmetric
– CPU-GPU bandwidth = 1.5x  AGP 8x
– GPU-CPU bandwidth = 5x  AGP 8x!

• May be feasible to return GPU results to 
CPU



Render To Vertex Array

• Render to texture, use as vertex array
– Allows feedback to vertex unit without CPU read 

back.
• Useful for simulation

– Simulate physics in fragment programs
– Render output as vertex arrays

• Demos:
– Cloth simulation
– Particle simulation


