- 1 * 1

Conference

GPGPU: Beyond Graphics

Mark Harris, NVIDIA

[e

RVIDIA.

¥y, -

Conference

What is GPGPU?

* General-Purpose Computation on GPUs
— GPU designed as a special-purpose coprocessor
— Useful as a general-purpose coprocessor

 The GPU is no longer just for graphics

— It is a massively parallel stream processor
— 32-bit float support

— Flexible programming model

— Huge memory bandwidth

J (C'?ffr”

¥y, - -

Conference

What is GPGPU?

 Much academic research in this area
— Cellular automata, fluid dynamics
— Cloth / hair simulation, soft bodies
— Particle systems, collision detection
— Global illumination, computer vision
— Computational Geometry
—www.GPGPU.org

| - " - | BVIDIA.
s, SR . O s

P -

Conference

Outline

 Motivation: Why GPUs?

« Mapping computational concepts to GPUs
* Tricks of the trade: Branching Techniques
e Current Limitations

 New OpenGL Functionality

 The Future

Why GPUSs?

<

RVIDIA.

Confernce

Why GPUs? Economics, Really.

« Graphics is “embarrassingly parallel”
— Data-parallel computation: vertices + pixels

* Millions of GPUs ship every month

— Largely thanks to multi-billion [$,£,€,¥]
game industry

* Result
— GPUs are inexpensive, but powerful
— Low cost per GFLOP

>
RVIDIA.

Compound Performance Growth Rates

Significantly above Moore’s Law

CAGR 2.0 - 1000x per decade

Slide courtesy of Kurt Akeley

Semiconductor Scaling Rates

From: Digital Systems Engineering, Dally and Poulton

** lgnores multi-layer metal, 8-layers in 2001 -
Slide courtesy of Kurt Akeley /

Communication is the Key to Performance

< Move data faster (optimize speed)
< Point-to-point wiring
< Advanced protocols (e.g. clock in data)
< Wide interfaces (256-bit GPUs)
< Move data less (optimize locality)
< Algorithm
< Architecture (e.g. pipeline GPU)
< Cache data

<

BVIDIA.

Slide courtesy of Kurt Akeley

Microprocessors Are All Cache!

LOCallty Optlmlzed Translation Integer E;:rléztriun Eg:;itting
. Lookaside Buffer Unit BuFfer Unit
using cache memory

CPU—| 15 58
1.75 270
2.0 1024
CPU= 1525 3325
25 9537

Vo e b Seiain

Slide courtesy of Kurt Akeley PA-8500 microprocessor

¥y, - -

Conference

What does this mean for games?

 CPU bound unless you balance the load!

« Start planning uses for GPU power now!
— Obvious: more graphics detall

— Not-so obvious: ‘
 Physics simulation, B

e global illumination
Al path finding?
e Procedural animation

[James 2001], @ﬁ‘u
[Elder Scrolls lll: Morrowind] #VIDIA.

- £

Conference

Goal: Harness GPU Power

* The cost of continued performance growth
— Specialization allows constraints
— Constraints enable optimization, but
— Makes generalization non-trivial

e GPU not as easy to program as a CPU

— Sometimes mappings are not obvious

— I'll talk about specific techniques, building
blocks, and examples

RVIDIA.

Confere

nce

Outline

e Motivation: Why GPUs?

« Mapping computational concepts to GPUs
* Tricks of the trade: Branching Techniques

e Current Limitations

 New OpenGL Functionality

 The Future

<

RVIDIA.

| f.a NE a e -
Conference

Main Computational Resources

 Programmable parallel processors
— Vertex & Fragment pipelines

e Rasterizer

— Mostly useful for interpolating addresses (texture
coordinates) and per-vertex constants

e Texture unit
— Read-only memory interface

 Render to texture
— Write-only memory interface

Array/Grid Computation

« Common GPGPU computation style
— Textures represent arrays

 Many computations map well to grids

— Matrix algebra
— Image & Volume processing
— Physical simulation

— Global lllumination

 ray tracing, photon mapping,
radiosity

* Non-grid computations can
often be mapped to grids

RVIDIA.

Scatter vs. Gather

e Grid communication
— Grid cells share information

©

(@ri. |

RVIDIA.

. f.a s a e -
Conference

Vertex Processor

* Fully programmable (SIMD / MIMD)
* Processes 4-vectors (RGBA / XYZW)

o Capable of scatter but not gather
— Can change the location of current vertex
— Cannot read info from other vertices
— Can only read a small constant memory
« Future hardware enables gather!
— Vertex textures

<
RVIDIA.

x
-

Confernce

Fragment Processor

* Fully programmable (SIMD)
* Processes 4-vectors (RGBA / XYZW)
« Random access memory read (textures)

o Capable of gather but not scatter
— No random access memory writes
— Output address fixed to a specific pixel
o Typically more useful than vertex processor

— More fragment pipelines than vertex pipelines
— RAM read
— Direct output

>
RVIDIA.

-

Conference

CPU-GPU Analogies

¥y, -

Conference

GPU Simulation Overview

_ _ _ Algorithm
« Analogies lead to implementation advect
— Algorithm steps are fragment programs | accelerate
« Computational “kernels” W::;:;':’;”:’
— Current state variables accessed from [z
textures i
— Feedback via Render to texture ,-ac%,bi
u-grad(p)

-

Conference

Invoking Computation

* Must invoke computation at each pixel
— Just draw geometry!

— Most common GPGPU invocation is a full-
screen quad

. u

A - 18 e
Conference

Standard “Grid” Computation

 |nitialize “view” (so that pixels:texels::1:1)
— gl Matri xMode(G._MODELVI EW ;
gl Loadl dentity();
gl Mat ri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
glOtho(O, 1, 0, 1, 0, 1);
gl Viewport (0, O, outTexResX, outTexResY);

e For each algorithm step:
— Activate render-to-texture
— Setup input textures, fragment program
— Draw a full-screen quad (1x1)

<
RVIDIA.

GameDevelana
Conference

Example: “Disease”

e Chemical reaction-
diffusion simulation

— Generate dynamic
normal map from the
result

o Add creepy effects to
your characters!

¥y, - -

nce

Example: Fluid Simulation

Confer

 Navier-Stokes fluid
simulation on the GPU

e GPU Gems article:

— “Fast Fluid Dynamics
Simulation on the GPU”

(2
RVIDIA.

Confere

nce

Outline

e Motivation: Why GPUs?

« Mapping computational concepts to GPUs
 Tricks of the trade: Branching Techniques
e Current Limitations

 New OpenGL Functionality

 The Future

<

RVIDIA.

Confernce

Branching Technigues

 Fragment program branches are costly
— No true branching on NV3X & R3X0
— Dynamic branches not cheap in near future

e Better to move decisions up the pipeline
— Replace with math
— Occlusion Query
— Domain decomposition
— Z-cull
— Pre-computation

RVIDIA.

- L
: B/ -\Y/-

Confrnc
Branching with OQ

e Use It for iteration termination

— Loop on CPU
e Begin Query
« Render with fragment program

— In fragment program, discard fragments that match
termination criteria

 End Query
 Terminate if query returns zero pixels
e Can be used for subdivision techniques

— Demo later

Domain Decomposition

 Avoid branches where outcome is fixed
— One region is always true, another false
— Separate FPs for each region, no branches

 Example:
boundaries

Interior: A Quad Primitive

Boundaries: Line Primitives

0O = Location of Pixels

Confernce

Z-Cull

* In early pass, modify depth buffer

— Write depth=0 for pixels that should not be
modified by later passes

— Write depth=1 for rest

e Subsequent passes
— Enable depth test (GL_LESS)
— Draw full-screen quad at z=0.5

— Only pixels with previous depth=1 will be
processed

 Available in future GPUs
— Depth replace disables Z-Cull on NV3X

>
RVIDIA.

- £

Confernce

Pre-computation

* Pre-compute anything that will not
change every iteration!

 Example: arbitrary boundaries

— When user draws boundaries, compute
texture containing boundary info for cells

— Reuse that texture until boundaries
modified

— Future hardware: combine with Z-cull for
higher performance!

>
RVIDIA.

Confere

nce

Outline

e Motivation: Why GPUs?

« Mapping computational concepts to GPUs
* Tricks of the trade: Branching Techniques
e Current Limitations

 New OpenGL Functionality

 The Future

<

RVIDIA.

. f.a s a e -
Conference

Current GPGPU Limitations

e Programming is difficult
— Limited memory interface
— Usually “invert” algorithms (Scatter - Gather)
— Not to mention that you have to use a graphics API...

 Limited bandwidth from GPU to CPU
— PCI-Express will help
— Frame buffer read can cause pipeline flush
— Avoid large & frequent communication to CPU

Confere

nce

Outline

e Motivation: Why GPUs?

« Mapping computational concepts to GPUs
* Tricks of the trade: Branching Techniques
e Current Limitations

« New OpenGL Functionality

 The Future

<

RVIDIA.

. f.a s a e -
Conference

New Functionality Overview

 Vertex Programs
— Vertex Textures: gather
— MIMD processing: full-speed branching

 Fragment Programs

— Looping, branching, subroutines, indexed input
arrays, explicit texture LOD, facing register

 Multiple Render Targets
— More outputs from a single shader
— Fewer passes, side effects
— “Deferred Computation”

>
RVIDIA.

- fﬂ § _.ﬂ- '] / =
Confere

New Functionality Overview

« VBO / PBO & Superbuffers
— Feedback texture to vertex input
— Render simulation output as geometry

— Not as flexible as vertex textures
* No random access, no filtering

— Demos
 PCIl-EXxpress
— Faster data download from GPU to CPU

RVIDIA.

EXAMPLES

<

RVIDIA.

o

nce

Example: Cloth Simulation

‘Confere

e Cloth Simulation
— Simon Green

— Simulation In
fragment program

— Use PBO/VBO to
cast texture as
vertex array for
rendering

RVIDIA.

Conference

Example: Particle Simulation

e Lecture: “Building A Million Particle System”
— By Lutz Latta, Wednesday at noon, GDC 2004

@;J

RVIDIA.

"GameDevel
Conference

Example: OQ-based subdivision

e Usedin
Coombe et al., “Radiosity on Graphics Hardware”

<

RVIDIA.

P -

Example: GPU Radiosity

 Greg Coombe, UNC

* Progressive-refinement radiosity

« Uniform and adaptive solutions
 Hemisphere visibility (not hemicube)

Confer

Confernce

The Future

e Increasing flexibility

— Vertex textures (gather, feedback)

— MRT (side effects)

— Branching (especially in vertex programs)
 Easier programming

— Non-graphics APIs and languages?

— Brook for GPUs
o http://graphics.stanford.edu/projects/brookgpu

RVIDIA.

| f.a NE a e -
Conference

The Future

 Increasing power

— More vertex & fragment processors

— GFLOPs, GFLOPs, GFLOPsS!

» Fast approaching TFLOPS!
e Supercomputer on a chip

— Start planning ways to use it!

e Massive multi-GPU Supercomputers?

More Information

e GPGPU news, research links and forums
—www.GPGPU.org

e SIGGRAPH 2004 GPGPU Course

— Wednesday, full-day
— Building blocks, advanced techniques & case studies

e Questions?
— mharris@nvidia.com

developer.nvidia.com
The Source for GPU Programming

< Latest documentation
< SDKs
< Cutting-edge tools
< Performance analysis tools
< Content creation tools
< Hundreds of effects
< Video presentations and tutorials
< Libraries and utilities
< News and newsletter archives

<
BVIDIA.

GPU Gems: Programming Techniques, GPUGems

Programming Techniques, Tips, and
Tips, and Tricks for Real-Time Graphics |[Firllississy

o -
v .
.-.'___i-:"
I‘ 3 -
-,
o [o

< Practical real-time graphics techniques from
experts at leading corporations and universities

< Great value:

< Contributions from industry experts Gdited by Randima Fernando
2 Full color (300+ diagrams and screenshots) g
< Hard cover
< 816 pages

< Available at GDC 2004

For more, visit:

http://developer.nvidia.com/GPUGems ' This collection of articles is
particularly impressive for its depth and

breadth. The book includes product-

“GPU Gems is a cool toolbox of advanced graphics oriented case studies, previously
techniques. Novice programmers and graphics gurus unpublished state-of-the-art research,
alike will find the gems practical, intriguing, and comprehensive tutorials, and extensive
useful.” code samples and demos throughout.”
Tim Sweeney Eric Haines

Lead programmer of Unreal at Epic Games Author of Real-Time Rendering

*
A .. vial

Conference

Extra Slides Begin Here

@

RVIDIA.

Conference

GL NV _vertex programa3

e Vertex Textures (TEX, TXP)
— Up to 4 on NVv40
— Mipmaps (TXB, TXL: bias or explicit LOD)
— GL_NEAREST filtering

* Indexed arrays of input / output attributes
« One additional condition code (2 total)

e PUSHA / POPA instructions
— For subroutine call / return

 NV40: MIMD - full-speed branching.

n 2 o TN /2

Conference

GL_NV_fragment_program?2

« Data-dependent branching
— Static / dynamic branching

— Fixed-iteration-count loops
— Conditional loop break (BRK)

e Subroutine calls

e Explicit LOD texture lookup (TXL)
* Indexed input arrays

e Facing register (front / back)

>

(C?f}r-i |

RVIDIA.

Confere

nce

Multiple Render Targets

 Write multiple RGBA results in FPs

 Reduce # passes by writing side-effects
— Avoid duplicate computation computation

e “Deferred computation”
— Like deferred shading, but for GPGPU

« See GL_ATI draw_buffers spec

| <
. | 2 | #VIDIA.
TNy Y o

Confere

VBO / PBO & Superbuffers

nce

* Flexible video memory allocation
* Vertex buffers and pixel buffers

e Specify usage at allocation time
— Driver can optimize location and format

e Multi-use buffers possible

— Closes the loop between fragment and
vertex units!

| <A
' | . ' BVIDIA.
w M"—;

¥y, - -

Conference

PCI-EXpress

e With AGP, GPU to CPU transfers slow
— Asymmetric bandwidth

 PCI-Express is symmetric
— CPU-GPU bandwidth = 1.5x AGP 8x
— GPU-CPU bandwidth = 5x AGP 8x!

 May be feasible to return GPU results to
CPU
<

i Co~
CEEENE - A g SSLITL

Conference

Render To Vertex Array

 Render to texture, use as vertex array

— Allows feedback to vertex unit without CPU read
back.

o Useful for simulation
— Simulate physics in fragment programs
— Render output as vertex arrays
e Demos:
— Cloth simulation
— Particle simulation

