
GPUGPU--AssistedAssisted
Rendering TechniquesRendering Techniques

Matthias M Wloka

Shader Model 3.0 Hardware Is Here!

• What can I do with it?

• How can it help me with my game?
– How can I use it to offload the CPU?
– How can it help my image quality?

How Can It Help My Game?

• Offload work from the CPU to the GPU
– “Render To Vertex Buffer” technique
– Uses texture-fetch feature of VS 3.0

• Image quality
– Per-pixel specular lighting
– Normal-map mipmaps produce artifacts

(distant objects shimmer)

Offloading the CPU

Simulate Vertex
positions Render

to frame-buffer

Typical Workflow

Offloading the CPU

CPU

Simulate Vertex
positions Render

to frame-buffer

Typical Workflow

GPU

Simulating On the GPU?

GPU

Simulate Vertex
positions Render

to frame-buffer

GPU

Read-back: BAD!

• Use them programmable shaders!

~100s~100s
MB/sMB/s

CPU

“Render To Vertex Buffer”
• Removes read-back from GPU to CPU

Render to
texture

Store vertices as
texture data

Read texture into
vertex shader

Simulate Texture Render
to frame-buffer

GPU

~10s~10s
GB/sGB/s

Examples

• Cloth
– Collide cloth against scene
– Run cloth physics:

damped springs

• Displacement Mapping
– Displace vertices

More Examples
• Snow/Sand accumulation

– Simulate friction/sliding

• Wind (simulation) bending grass

• Particle Systems

• Water waves/wakes

Demo by Jeremy Zelsnack

• Tessellated, flat plane for water

Rendering Water

Simulate Texture Render
to frame-buffer

GPU

Solve wave-
equations

Store vertex
heights

Read height in
vertex shader

How Does It Work?

• Create a vertex-mesh for
water surface
– Say, 128 by 128 vertices
– Encode vertex’s mesh-

position as uv-coordinates

(0,0) (1,0)(.25,0) (.5,0) (.75,0)

Vertex Shader Work

• Read ‘height-map’
– Floating-point texture
– Read texture at vertex’s uv

• Add result to vertex’s y

• Transform/Project vertex

vertex.y += tex(u, v)
Out.pos = WorldViewProj * vertex

Height-Map Is Dynamic

• Update every frame
– With GPU via render-to-

texture

• Simulate water movement
with Verlet integration

Verlet Integration

• A = ∑ (neighbors) – 4 Hn-1
Hn = (Hn-1 – Hn-2) + A
– Operates on positions only
– No need to store velocity or acceleration

• Compute normal from positions:
N = Normalize(S x T)

Add Disturbances to Height Map

• Blend displacements into the water
– For example: the boat, rocks, shore

• Verlet-integration integrates it next frame

• Yes, floating-point render-target blending

Add Usual Eye Candy

• Caustics
– Bilinear filtering of the normals crucial:

low-res (128x128) texture

• Reflection/Refraction

• Fresnel

Advantages

• Fast!
– Simulation happens on 128x128 texture
– Small by GPU standards
– Frame-rate unaffected by simulation

• Reasonable geometric complexity
– 128x128 is 16k vertices

More Details on This Sample
(and Others)

• Next-Gen Special
Effects Showcase
– Wednesday,

12-1pm

Particles via Render-to-VB
• Building a Million

Particle System
– Lutz Latta
– Wednesday, 12-1pm

Image Quality

• Per-pixel specular lighting
– Normal-map mipmaps produce artifacts

(shimmer on distance objects)
– Uses floating-point texture filter and blend

Normal-Map Mipmap Artifacts

What Is the Problem?
• Specular term (N • H)s is high-frequency

function:
1.0

-0.5 0.50.0

(N • H)40

Sampling Frequencies

• Magnification case:
accesses top-level mipmap
– Sufficient sampling

• Minification case: lower mip-levels
– Without mipmaps: sparkle city
– With mipmaps: better, but not much

What Is a Normal-Map Mipmap?

• Averaging
– Replace 4 normals with

1 completely different normal

• Not re-normalizing shortens
that normal
– Scales down dot-product

shortens
normal

What We Really Want

• N • H is a hack
– N represents all normals in texel

• Integrate over all normals in texel
– Integral is N • H only if

all N in texel are the same
– Not true for mipmaps

• Approximate dot-product via Gaussian:
(N • H)s = cossα ≈ e-½ s α2

• Gaussians with standard deviation
– Sum of them is another Gaussian with

standard deviation

How To Integrate

After A Lot Of Math…

• Dot-product with Gaussian is:
Na = ∑i Ni
ft = 1/(1 + s (1/|Na| - 1)) (Toksvig factor)

specular term = ft ((Na • H) / |Na|)ft s

Corner Cases

• Dot-product with Gaussian is:
Na = N
ft = 1/(1 + s (1/|Na| - 1)) (Toksvig factor)

specular term = ft ((Na • H) / |Na|)ft s

Corner Cases

• Dot-product with Gaussian is:
Na = N
ft = 1/(1 + s (1/|N| - 1)) = 1

specular term = 1 ((N • H) / |N|)1 s

= (N • H)

Another Corner Case

• Dot-product with Gaussian is:
Na = ∑i Ni = 0
ft = 1/(1 + s (1/0 - 1)) = 0

specular term = 0 ((0 • H) / 0)0 s

Effect

• Length of normal expresses distribution

• Constant normal across texel
– Computes sharp high-lights

• Widely varying normals across texel
– High-light faints and widens

Messy Formula To Compute?

• Function ft ((Na • H) / |Na|)ft s depends on
– s (constant)
– Na • H
– Na • Na

• 2D texture look-up: tex(Na • H, Na • Na)
– Different 2D textures for different s

Implementation

• Generate mipmaps via averaging
– Leave vectors un-normalized!

• Fetch Na
– Fp16 to minimize precision errors
– Anisotropic filtering for best results

Implementation Continued

• Compute Na • H and Na • Na

• Fetch specular using those coordinates
– Since it is a function look-up:
– Bilinear only
– No mipmaps
– 128x128 works ok

Result and Observations
• Short normals in base-level:

reduced specularity

• Specialize normal mipmap
generation

• Applies to interp. vertex
normals

• Applies to reflection-map
lookups (LOD them)

Before/After Comparison
Before After

Questions, Comments,
Feedback?

• mwloka@nvidia.com

• http://developer.nvidia.com
The Source for GPU Programming

• Slides available online

More Rendering Techniques:
NVIDIA’s SDK 7.0

• 200+ rendering
techniques

• CD available @
NVIDIA’s booth

• Free

Other Rendering Technique Talks
• Cinematic Effects II: The Revenge

– Wed, 9-10am

• GPU Gems Showcase
– Wed, 5:30-6:30pm

• Real-Time Translucent
Animated Objects
– Fri, 2:30-3:30pm

