
Real-Time Animated
Translucency

Greg James, NVIDIA
Simon Green, NVIDIA

Audience & Goals
• Programmers
• Designers
• Technical Artists

• Review current methods
– Being used in upcoming titles

• Future directions

Introduction
• Basics of translucency & scattering
• Focus on visual appearance, not physics
• Techniques:

– Atmospheric light scattering (Hoffman & Preetham)
– Pre-computed radiance transfer (P.P. Sloan)
– Polygon hulls as thick volumes
– Lighting model tricks
– Depth-map based scattering
– Texture-space diffusion

Teaser Images
• Volume fogs
• Trivial to animate

the fog and the
scene

Teaser Images
• X-ray effect

Teaser Images

Light transmission No light transmission

Teaser Image: Skin Diffusion

No Diffusion Subsurface Diffusion

Translucency and Scattering
• All materials are translucent

– Depends on light wavelength
• Light penetrates all surfaces to some

degree
– Different wavelengths have

• Different penetration depths
• Different falloff vs. depth

• If not absorbed or reflected, the light
might scatter and exit somewhere else

Why Use Translucency?
• Subtle effect, but powerfull visual cue
• Translucent objects are more pleasing,

interesting, and realistic
• Particularly significant for skin shading

– Simon will talk about this
• Routinely used in movies - Harry Potter,

The Hulk, Matrix Revolutions

Translucency Basics
• Optical Properties

– Absorption (probability vs. distance)
– Scattering (probability vs. distance & angle)
– Impedance changes (reflection and refraction)

• Optical impedance determines the index of refraction

• Everything absorbs and scatters
– fluids, solids, gasses, even pure clean air

• Opacity, transparency, and translucency
– Vary in the probability of absorption & scattering

Opactiy
• High probability of

absorption & scattering
• Light takes short paths
• Light comes from surface,

not interior

Transparency
• Low probability of absorption and scattering

Images courtesty of Leigh Van Der Byl

Translucency
• Low probability of absorption
• High probability of scattering

Leigh Van Der Byl

Real-Time Attitude
• Get the look. Forget the math

– See Hoffman & Preetham for good scattering math
• Various techniques

– Depth-map rendering for thickness & scattering
– Texture-space diffusion

• Requirements
– Artist friendly, content friendly
– Fast as blazes
– Fallbacks
– Animate-able lighting and self-shadowing

Depth Maps
• Fog is an ordinary

polygon model
• Render-to-texture

passes used to
calculate distance
through fog object

• ps.1.3
• ps.2.0 is faster
• ps.3.0 is faster++

Volume Fog Technique
• Inspired by Microsoft’s “Volume Fog”

DXSDK demo (Dan Baker)
• Inspired by [Mech01]
• Compute thickness through ordinary

polygon objects from camera’s P.O.V.
– Render the depths of an object’s front and

back faces
• Derive color from thickness
• Great method for single scattering

Single Scattering
• Light bounces once from source to eye
• Light contribution from scattering is

proportional to thickness

View point

Rendering Thickness Per-Pixel

View
point

distance

pixels

thickness

translucent object

Thickness From Distances

distance

pixels thickness

FRONT
BACK

THICKNESS = BACK - FRONT

Rendering Thickness Per-Pixel

distance

∑∑ −= FrontBackThickness

pixels

• Thickness for any uniform density object is easy
• No Z-Buffer. Use additive blending

Convert Thickness to Color

• Thickness * scale TexCoord.x
• Color ramp texture: Artistic or math
• Easy to control the look

thickness

Color Ramp
Texture

0.0

What About Intersection?

• Need depth to solid object
• Not depth to volume object faces

Intersection Solution
• Need depth of nearest solid object

– Render it to a texture
– Read the texture in a pixel shader

• As you render each of the volume object’s faces
– Pixel shader outputs lesser of

• Depth of volume object triangle being drawn
• Solid object depth (from texture) at pixel being drawn

– Disable depth testing
– Additive blend the output depth into the framebuffer

Intersection Solution

Volume Geometry

Solid Objects

Rendered Depths

Intersection Method Advantages
Advantages
• Does not require stencil
• Does not require multi-pass
Disadvantages
• Must render depth of

– Anything intersecting the volumes
– Anything that can occlude the volumes

• Can be avoided depending on the scene

Steps: Pixel Shader 2.0
1.Render solid objects to backbuffer

– Ordinary rendering
2.Render depth of solid objects that

might intersect the fog volumes
– To ARGB8 texture, “S”
– RGB-encoded depth. High precision!

3.Render fog volume backfaces
– To ARGB8 texture, “B”
– Additive blend to sum depths
– Sample texture “S” for intersection

S

O

B

Steps: PS.2.0 contd.
4.Render fog volume front faces

– To ARGB8 texture, “F”
– Additive blend to sum depths
– Sample texture “S” for intersections

5.Render quad over backbuffer
– Samples “B” and “F”
– Computes thickness at each pixel
– Converts thickness to color using fog

color ramp texture
– Blends color to the scene
– 5 instruction ps.2.0 shader Final

F

PS.3.0 HW Improvements
• Front / back facing register
• Multiple Render Targets (MRT)
• Floating-point framebuffer blending

• Fewer passes
• Fewer render-target textures

PS.3.0 vs. PS.2.0

ps.2.0
HW

b. Texture ‘O’ c. Texture ‘B’ d. Texture ‘F’ e.a. Backbuffer

5 Passes

ps.3.0
HW

RT-Tex ‘O’ c. ‘F’ and ‘B’
F/B register

a. RT-Tex

3 Passes

MRT

d. Backbuffer

ps.1.3
HW

6

Volume Fog Technique
• NV demo improvements

– Higher precision: 12, 15, 18, 21-bit depth
– Precision vs. depth complexity tradeoff
– High precision decode & depth compare
– Dithering eliminates depth aliasing
– No banding, even with deep view frustum
– Simple, complete intersection handling for

any shapes

Importance of Dithering

a. b.

c. d.

Fancier Scattering
• We used a texture to convert thickness to color

• Could use math to describe light scattering
• Hoffman & Preetham atmospheric scattering

Real-Time Translucent Atmosphere
• Hoffman & Preetham
• Rayleigh & Mie scattering in vertex shader

Atmospheric Scattering Terms

L0, Radiance (direct illumination) Fex, Extinction (out-scatter & absorption)

L0 * Fex
Lin, in-scatter

L = L0 * Fex + Lin

*

+

Images courtesy of Hoffman & Preetham

GREG’S REFERENCE SLIDES
• **

Non- and Near-Real-Time Methods
• Faster monte carlo simulation

– H.W. Jensen, J. Buhler, Siggraph’02, p. 576
• BSSRDF

– C. Hery (ILM), Jensen, et. al.
• Pre-computed Radiance Transfer (PRT)

– P.P. Sloan, MSFT
– New work at GDC 2004 MSFT Developer Day

(Tues.) on animating the parameters
– Animation is tough in SH-basis

Issues with SH-Basis PRT
• Illumination from sources at infinity

– Environment map
– Must be pre-processed to encode in SH basis
– How to get occlusion from local dynamic objects?

• trees, walls, other occluders

• Self-shadowing and large motions
– Animation transforms have high-frequency effects

on lighting and self-shadowing
– Accounting for high frequencies with N animation

parameters leads to a data explosion

PRT for Sub-Surface Only
• Separate PRT for self-shadowing from

PRT for sub-surface
• Incident radiance has high-frequency

changes under animation
– SH basis is undesireable – slow encode

• Sub-surface light has low frequencies
• Simple ‘gather’ of incident L (reduce

resolution) and polynomial mapping to
sub-surface contribution ?

Scattering Characteristics
• Bsc(θ) is the probability of scattering

– Depends on angle, θ
• Rayleigh scattering

– Why the sky is blue
– Particle size < wavelength of light
– Electron orbits make it wavelength dependent

• Mie scattering
– Why smoke is smokey
– Particles > wavelength of light
– Depends on particle absorption & reflectance
– Complex probability of scattering, Bsc(θ)

RGB-Encoding
• Encode and Sum high-precision

numbers stored as A8R8G8B8 colors
• Use if no float framebuffer blending

0255

032768

15-bit value

RGB-8 color

R G B

Radomir Mech Helicopter

BEGIN SIMON’S SECTION
• **

Other Scattering Techniques
• Why scatter?
• 3 Techniques:

– Lighting model tricks
– Depth-map based scattering
– Texture-space diffusion

The Uncanny Valley

Coined by Japanese roboticist Doctor Masahiro Mori

What Does Scattering Look Like?
• Softens overall effect of lighting

– small surface details are less visible
– light bleeds from light areas into shadows

• Attenuation
– the further light travels through the material, the

more of it gets absorbed and diffused
• Color shift

– the color of the exiting light is affected by sub-
surface material

BRDF

From: Jensen et al “A Practical Model for Subsurface Light Transport”

BSSRDF

From: Jensen et al “A Practical Model for Subsurface Light Transport”

Lighting Function Tricks
• Very few diffuse surfaces actually obey

Lambert’s law – e.g. the moon
• “Wrap” lighting is a simple modification of the

normal Lambert diffuse function
• diffuse = (dot(L, N) + wrap) / (1 + wrap)
• Causes lighting to “wrap” around object

beyond the normal 90 degrees
• Can bake function into texture map
• Means less ambient, fill lighting is required

Wrap lighting function

Without Wrap Lighting

With Wrap Lighting

Wrap Lighting with Color Shift

Depth-Map Based Scattering
• The distance light travels through the material

is an important factor in scattering
– The further it goes, the more of it is absorbed and

scattered away
• We can use depth maps to measure this
• Very similar to Greg’s technique, but from the

point of view of the light
• Technique first described by Christophe Hery

(ILM), see 2002/2003 Siggraph Renderman
Course Notes

Depth-Map Based Scattering
• Very similar to shadow mapping
• Depth map pass:

– Render scene from point of view of light
– Store distance from light to texture

• Second pass:
– Shader calculates distance of shaded point from

light
– Looks up in depth texture to get distance from light

at entry point
– Subtracts the two to get thickness

Using a Depth Map to
Measure Thickness

Shading
• What to do with the thickness value?
• Can use it directly to index into an artist-

created 1D color table
• Intensity should fall off exponentially with

distance
• Should also take into account

– Fresnel effect at entry and exits points (requires
normal at entry point)

– Refraction
– Color map

Depth-Map Scattering Example

Depth-Map Scattering Example

More Sophisticated Models
• Using a single depth map sample is cheap, but has

artifacts
– Doesn’t simulate diffusion (no blurring)
– Features from backside of model will be visible

• More sophisticated single scattering approximations
march along refracted ray, taking multiple samples
– Use phase functions to describe directions light is scattered

when it hits a particle
• Multiple scattering models

– Use diffusion approximation to simulate multiple scattering in
highly scattering media such as skin

Depth-Map Based Scattering
• Disadvantages

– Only works with convex objects, holes are
not accounted for correctly (not a big
problem in practice)

– Could use Greg’s technique to solve this
• Advantages

– Works for animating objects
– No pre-calculation necessary

Caveat – Uniform density
• nose & fingers are same thickness as

ears, but ears let more light through
• need to account for what is under the

surface
• more painting of maps for bone, flesh,

blood
• can get to be a lot of work

Texture Space Diffusion
• One of the observed effects of subsurface scattering

is a general blurring of the lighting
• Artists often use 2D tricks in Photoshop

– Gaussian blur image, add a percentage back on top of
original image

– Sometimes called glow / bloom
• Why can’t we do this in real-time?
• We can, and we can do it in UV texture space instead

of screen space
• Technique first described by George Borshukov in

“Realistic Human Face Rendering for “The Matrix
Reloaded”

The Matrix Reloaded

Texture Space Diffusion
• Render model unwrapped to UV space

– Render model with diffuse lighting, but using UV texture
coordinates as position

– Requires good, unique UV mapping
– Generates 2D light-map

• Blur light-map using normal techniques
– separable convolution, make use of bilinear filtering
– Can blur different color channels by different amounts to

simulate different mean free paths of wavelengths
– For skin, blur red channel more than green and blue

• Render model with blurred light-map
– shader combines with color map and regular lighting

Lightmap Before Blurring

Lightmap After Blurring

Original Lighting

With Blurred Lightmap

Dusk - No Diffusion

Dusk - With Diffusion

Future Work
• Combine depth-map technique with

texture space blurring
• Use fp16 blending for measuring

thickness
• Experiment with depth-peeling
• Use several color maps for different skin

layers (surface, veins etc.)

Conclusion
• Scattering can help take your game

characters to the next level of realism
• 90% of the look of a full BSSRDF

simulation can be achieved using cheap
approximations

References
• NVIDIA SDK available online at http://developer.nvidia.com
• Borshukov, George, and J. P. Lewis. 2003. “Realistic Human Face Rendering for ‘The

Matrix Reloaded.’” SIGGRAPH 2003. Available online at
http://www.virtualcinematography.org/

• Everitt, Cass. 2003. “Order-Independent Transparency.” Available online at
http://developer.nvidia.com/view.asp?IO=order_independent_transparency[CK1]

• Hery, Christophe. 2002. “On Shadow Buffers.” Presentation available online at
http://www.renderman.org/RMR/Examples/srt2002/PrmanUserGroup2002.ppt

• Hery, Christophe. 2003. “Implementing a Skin BSSRDF.” RenderMan course notes,
SIGGRAPH 2003. Available online at
http://www.renderman.org/RMR/Books/sig03.course09.pdf.gz

• James, Greg. 2003. “Rendering Objects as Thick Volumes.” In ShaderX2: Shader
Programming Tips & Tricks With DirectX 9, ed. Wolfgang F. Engel. Wordware. More
information available online at http://www.shaderx2.com/

• Jensen, Henrik Wann, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. “A
Practical Model for Subsurface Light Transport.” Proceedings of SIGGRAPH 2001.

• Mech, Radomir, “Hardware-Accelerated Real-Time Rendering of Gaseous Phenomena.”
Journal of Graphics Tools, 6(3):1-16, 2001. http://www.acm.org/jgt/papers/Mech01/

• Nayar, S. K., and M. Oren. 1995. “Generalization of the Lambertian Model and Implications
for Machine Vision.” International Journal of Computer Vision 14, pp. 227–251.

• Pharr, Matt. 2001. “Layer Media for Surface Shaders.” Advanced RenderMan course notes,
SIGGRAPH 2001. Available online at
http://www.renderman.org/RMR/Books/sig01.course48.pdf.gz

