

%VIDIA® GPU Water Simulation

Jeremy Zelsnack

Demo

Algorithm Overview

- Perform water simulation in pixel shader
 - Render to texture (D3DFMT_A16B16G16R16F)
- Render refraction and reflection maps
- Render water surface
 - Use simulation results via VS3.0 vertex texture fetch
 - Compute perturbed texture coordinates
 - Combine refraction and reflection using Fresnel term

Simulation

- Solve 2D wave equation
 - Verlet Integration
 - Good stability
 - Uses previous 2 results
 - No velocity stored

- Influence simulation
 - Dampening maps
- Control simulation
 - Render alpha-blended geometry into simulation

Vertex Texture Fetch (VS3.0)

Vertex shader reads simulation result with vertex texture fetch

Refraction Map

- Render scene from camera viewpoint
- If camera is <u>above water</u>
 - Render <u>underwater</u> geometry
- If camera is <u>underwater</u>
 - Render <u>above water</u> geometry

Reflection Map

- Render scene from reflected camera viewpoint
 - Reflect view transform about water plane
- If camera is <u>underwater</u>
 - Render <u>underwater</u> geometry
- If camera is <u>above water</u>
 - Render <u>above water</u> geometry

Perturbed Texture Coordinates

- Start at water position
- Move along refraction or reflection vector
- Project into screen space

Fresnel Reflection Term

- Determines amount of reflection / refraction
- Roughly pow((1 dot(eye, normal)), p)
 - Fresnel term = 0 => all refraction
 - Fresnel term = 1 => all reflection

Demo

Questions or Comments?

jzelsnack@nvidia.com

http://developer.nvidia.com

developer.nvidia.com The Source for GPU Programming

- Latest documentation
- SDKs
- Cutting-edge tools
 - Performance analysis tools
 - Content creation tools
- Hundreds of effects
- Video presentations and tutorials
- Libraries and utilities
- News and newsletter archives

verQuest® content courtesy Sony Online Entertainment Inc.

- **GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics**
 - Practical real-time graphics techniques from experts at leading corporations and universities
 - Great value:
 - Contributions from industry experts
 - Full color (300+ diagrams and screenshots)
 - Hard cover
 - 816 pages
 - Available at GDC 2004

For more, visit: http://developer.nvidia.com/GPUGems

"GPU Gems is a cool toolbox of advanced graphics techniques. Novice programmers and graphics gurus alike will find the gems practical, intriguing, and useful."

Tim Sweeney

Lead programmer of Unreal at Epic Games

"This collection of articles is particularly impressive for its depth and breadth. The book includes productoriented case studies, previously unpublished state-of-the-art research, comprehensive tutorials, and extensive code samples and demos throughout."

Eric Haines

Author of Real-Time Rendering

