
Perspective Shadow MapsPerspective Shadow Maps
Gary King

Shadow Mapping Review

Image-based shadow technique
Lance Williams, 1978.
As compared to object-based stencil shadows

First, render depth from light’s point of view
e.g., Z-buffer

When rendering scene, transform fragments into
shadowmap, and perform depth comparison

If the fragment fails test, it is shadowed

Shadow Mapping on GPUs

On Radeon 9500+
Floating-point textures (R32F)
Pixel shader filtering and comparison

On GeForce 3+
Native shadow map support (16 and 24-bit integer)
2x2 bilinear percentage closer filtering for free
Double-speed rendering on GeForceFX and later GPUs

Shadow Mapping Problems

Aliasing!
Objects distant from light may be close to viewer
(perspective aliasing)

Receivers perpendicular to light projection plane
may be parallel to view plane (projective aliasing)

Solving Shadow-Map Problems, #1

Easiest solution is to increase sample density
Just like other aliasing problems
This could require a huge shadow map for outdoors
32k x 32k is unrealistic for hardware acceleration

128x128 512x512

Solving Shadow-Map Problems, #2

Redistribute samples in shadow map
Shadow volumes and ray tracers sample uniformly
from viewer
Traditional shadow maps sample uniformly from light

We need a transform that warps light space in a
view-dependent way

Properties of Post-Projective Space

All visible objects squeezed into a unit cube
[-1,-1,0]..[1,1,1] in D3D
[-1,-1,-1]..[1,1,1] in OGL

The infinity plane (w=0) has a well-defined position
Directional lights become point lights on this plane

Eye Space Post-Projective Space

Perspective Shadow Maps

What about viewer’s projection matrix?
Perspective transform makes objects near viewer
larger than more distant ones

Key insight behind Perspective Shadow Maps
Stamminger & Drettakis, SIGGRAPH 2002
Addresses perspective aliasing

To build a shadow map for a directional light
LookAt matrix from post-projective light to view-box
Compose with scene view*projection

Unfortunately…

PSMs, as implemented in Stamminger and
Drettakis’ paper, had quite a few issues

Lights from behind viewer
Temporal, view-dependent shadow quality
Strong near-plane dependence
Self-shadow artifacts

Simon Kozlov’s article in GPU Gems, “Perspective
Shadow Maps: Care and Feeding,” addresses all of
these issues.

Demo

Large-Scale Full-Scene Shadow Mapping
1600m x 1600m terrain (Znear= 1m, Zfar=800m)
40 shadow-casting objects
One 1536 x 1536 shadow map

Lights from Behind Viewer

Significant problem with original PSM implementation
Objects behind viewer (w<0) cast shadows into scene
(w<0) is on opposite side of infinity plane

Eye-space Post-projective space

Lights from Behind Viewer: Old Solution

Expand view volume
Keep all shadow casters on positive side of Zinfinity

“Slide back” virtual viewer to include all casters

But increasing view volume decreases texel density
Large, instantaneous drop in shadow quality

default Slide back by Znear

Lights from Behind Viewer: New Solution

Shadow matrix looks at both sides of infinity plane
Near=-a, far =a (a = distance from light to view box)
Shadow projection “wraps around” infinity
Requires high-precision depth buffer (R32F, D24X8)

No view volume expansion required
No instantaneous drops in shadow quality

D3DXMatrixPerspectiveFovLH(

&matrix,fovy,aspect,-a,a);

View-Dependent Shadow Quality

Light and scene transformed by view*projection
Relative post-projective position depends on viewer

When Zinfinity~1.0, shadow field-of-view ~180o

Happens when light is close to view-box

This greatly reduces texel density
Increases shadow map perspective aliasing

View-Dependent Shadow Quality

Reduce artifacts by optimizing shadow frustum
Get bounding volume of shadow receivers in view
Build tight bounding frustum from this point list
Analogous to clipping the view box

Do not include shadow casters in this list
“Inverted” matrix will see everything

View-Dependent Shadow Quality

Without clipping With clipping

Near-Plane Dependence

Post-projective Z distribution affects shadow quality
Great near camera, much worse far away

If Zinfinity~1.0, quality in distance will be unacceptable
Happens when Zfar>>Znear

Near-Plane Dependence: Old Solution

Find optimal near plane position
Read depth buffer onto CPU, find nearest point
Or, use bounding volumes to approximate

CPU read-back is a bad idea
Forces synchronization between CPU & GPU
D24X8 is an opaque format

Bounding volumes often insufficient
In outdoor scenes, every 1m of Znear helps

Near-Plane Dependence: New Solution

“Virtually” slide back near plane
Translate “virtual” eye by Zslideback

Move “virtual” eye plane forward by Zslideback

Shrink virtual field-of-view
Increases view volume, but improves Z distribution
I choose Zslideback based on a fixed minimum for Zinfinity

View’ = View * D3DXMatrixTranslate(0,0,Zsb);

theta = max(atan(hf/(f+Zsb)), atan(hn/(n+Zsb)));

D3DXMatrixPerspectiveFovLH(&Proj’,2*theta),aspect,n+Zsb,f+Zsb);

Good results without any scene analysis
Simple analysis can further improve quality

Self-Shadow Artifacts

Simple constant bias is ineffective for PSMs

Depth slope scale bias works great
But only applies to depth shadow maps (e.g., D24X8)

Or, calculate bias in the vertex shader
Based on the texel size in world space

Summary

Perspective Shadow Maps are (finally) useful

Some CPU analysis is required for best results
But limited to bounding boxes and O(N) algorithms

Use hardware shadow maps on NVIDIA GPUs

This presentation focused on directional lights,
PSMs are applicable to point lights, too

See original paper and Kozlov’s article for details

Questions

Email: gking@nvidia.com

Web: http://developer.nvidia.com

References

Kozlov, S. Perspective Shadow Maps: Care and
Feeding. GPU Gems, 2004

Stamminger, M and G. Drettakis. Perspective
Shadow Maps. SIGGRAPH 02, 2002

Williams, L. Casting curved shadows on curved
surfaces. SIGGRAPH 78, 1978

developer.nvidia.comdeveloper.nvidia.com
The Source for GPU Programming

Latest documentation
SDKs
Cutting-edge tools

Performance analysis tools
Content creation tools

Hundreds of effects
Video presentations and tutorials
Libraries and utilities
News and newsletter archives

EverQuest® content courtesy Sony Online Entertainment Inc.

GPU Gems: Programming Techniques, GPU Gems: Programming Techniques,
Tips, and Tricks for RealTips, and Tricks for Real--Time GraphicsTime Graphics

Practical real-time graphics techniques from
experts at leading corporations and universities

Great value:
Contributions from industry experts
Full color (300+ diagrams and screenshots)
Hard cover
816 pages
Available at GDC 2004

“GPU Gems is a cool toolbox of advanced graphics
techniques. Novice programmers and graphics gurus
alike will find the gems practical, intriguing, and
useful.”
Tim Sweeney
Lead programmer of Unreal at Epic Games

“This collection of articles is
particularly impressive for its depth and
breadth. The book includes product-
oriented case studies, previously
unpublished state-of-the-art research,
comprehensive tutorials, and extensive
code samples and demos throughout.”
Eric Haines
Author of Real-Time Rendering

For more, visit:For more, visit:
http://http://developer.nvidia.com/GPUGemsdeveloper.nvidia.com/GPUGems

