Appendix

We include here the details on how we remove the frac instruction from the tree lookup.

A complete tree would produce at depth D a 3D grid of resolution Mp;
NP x NP x NP We call this grid the depth D grid. At depth D, the M
point M lies in a cell of this grid. The integer coordinates of this cell &

Mbp ¢

are M, = floor(M- N). The local coordinate of M within this
cellare M, . = frac(M- N®).

My, +M,,
NT
The lookup coordinates within the indirection pool are computed as
p_ In+ My, I+ frac(M -N")
S S

M, +M I,+M-N°-M,,
—Di DS e can rewtite Pas P =2 D.i

N” S

It follows M =

Using the fact that M =

Note that M ;) ,is a constant within the node visited at depth D. It corresponds to the

coordinates of the node within the grid of depth D. We call these coordinates G, .

We rewrite G, as G, = kS + O, where k is an integer and O < § .

M-N°+1,-Q-k _M-N"+1,-Q
S S

We now obtain P =

©)

We define A, =1,-0Q

If we bind the indirection pool texture in repeat mode (GL_REPEAT), we can add any
integer to P without changing the result. Therefore the term — k in equation (1) can be

ignored.
M-N”+A,

Finally, we have P = 3

2

Instead of directly storing the node indices /;, we actually store A, and use equation (2).
This removes the frac operation. However, storing A, could be a problem if it can take
arbitrary large integer values. Fortunately, since 1, <Sand(Q < S, it comes—§ <A, < §.

Moteovert, if A, is less than 0, we can use S + A, instead without changing the result of the
lookup (once again thanks to the repeat mode). Therefore we only have to store values in the

range [0, S [.

