
High Dynamic Range Rendering
on the GeForce 6800

High Dynamic Range Rendering
on the GeForce 6800
Simon Green / Cem Cebenoyan 



Overview

What is HDR?

File formats
OpenEXR

Surface formats and color spaces

New hardware features to accelerate HDR

Tone mapping

HDR post-processing effects

Problems
Floating-point specials!



What is HDR?

HDR = high dynamic range
Dynamic range is defined as the ratio of the largest 
value of a signal to the lowest measurable value
Dynamic range of luminance in real-world scenes can 
be 100,000 : 1
With HDR rendering, luminance and radiance (pixel 
intensity) are allowed to extend beyond [0..1] range

Nature isn’t clamped to [0..1], neither should CG
Computations done in floating point where possible
In lay terms:

Bright things can be really bright
Dark things can be really dark
And the details can be seen in both



Fiat Lux – Paul Debevec et al.

HDR rendering at work: Light through windows is 10,000s of
times brighter than obelisks – but both are easily perceptible in
the same 8-bit/component image.



OpenEXR

Extended range image file format developed by 
Industrial Light & Magic for movie production
Supports both 32-bit and 16-bit formats
Includes zlib and wavelet-based file compression
OpenEXR 1.1 supports tiling, mip-maps and 
environment maps
OpenEXR 16-bit format is compatible with NVIDIA 
fp16 (half) format
16-bit is s10e5 (analogous to IEEE-754)

Supports denorms, fp specials
range of 6.0e-8 to 6.5e4

www.openexr.com



What does HDR require?

“True” HDR requires FP everywhere
Floating-point arithmetic

Floating-point render targets

Floating-point blending

Floating-point textures

Floating-point filtering

Floating-point display?

We have almost all of these today
With performance too



Floating-point arithmetic

All math in the pixel shader is done in floating 
point today

IEEE 32-bit (s23e8)
This is fast now!

OpenEXR 16-bit (s10e5)
In HLSL, used with half datatype

Only used when _pp is specified in asm



Floating-point frame buffers

Once you’ve done your lighting computations with 
HDR lights, you need to store these somewhere

fp16 surfaces are the best solution
High precision

Linear format

High dynamic range

fp32 per-component would be overkill
Too much space, bandwidth

Plus, doesn’t support blending



Floating-point Blending

True HDR rendering was hampered in the previous 
generation of graphics hw by the lack of blending 
support – GeForce 6800 supports this

Blending is crucial for:
Adding lights into the framebuffer

Transparency

Many algorithms work better with one pass per 
light

Stencil shadow volumes

Without fp blending this is painful
Involves ping-ponging, copying



Floating-point textures

With GeForce 6-series we orthogonally support:
A32R32G32B32F

A16R16G16B16F

R32F

For all formats (cube maps, volume textures), power-
of-2, np2

But is this what you really want?



Floating-point textures

Even the “low” precision texture format (4xfp16) is 
64-bits per texel

2x the space / bandwidth of 32-bit ARGB

16x the space / bandwidth of DXT1 !

Space is the biggest killer here
Hasn’t scaled at the same rate as computational 
power and puts a limit on visual complexity

Surface textures don’t usually require the added range 
of floating point

Color textures just represent the percentage of light 
reflected (albedo)



Floating-point filtering

We fully support fp16 filtering on GeForce 6800

Many algorithms rely on post-processing effects 
after lighting

With HDR rendering, these lighting results will be in 
floating point

Canonical example is glow / blur
Almost all blur kernels can be accelerated with 
native hw filtering support



Tone Mapping

HDR rendering produces floating point color values 
with unlimited range

Most displays today are 8-bits per color component

Tone mapping is the process of converting fp
luminance values to a final displayable value

Analogy to film photography: set aperture, 
exposure based on scene, develop film

One such mapping function is 

From “Photographic Tone Reproduction for Digital Images”, Reinhard et al.

Note the reliance on Lumavg!



Tone Mapping

Given an HDR scene, first convert to luminance



Tone Mapping

Now create down-filtered results all the way down to 1x1

This is trivial and fast with native hardware fp filtering

Gives you the average luminance for the scene



HDR Post-Processing Effects

Glow / bloom / glare
Very popular

Bright parts of scene spill over neighbouring pixels

Softens overall image

Inspired by real effect seen in film photography and 
in human visual system

Implemented using blur filter
Render scene to texture

Optionally, threshold image to get bright parts

Blur a copy of the scene texture

Final image is a mix of original and blurred image



Blur Tricks

Down sample image first
More efficient for large blur filters
Instead of using 32 pixel blur filter, reduce image by 
4x and use a 8 pixel blur instead
Reconstruct full size image using texture filtering
Very hard to see visual difference

Use separable filters
Blur in X axis first, and then blur in Y
2n texture look-ups rather than n*n

Use fp16 texture filtering for blur
Can use half the number of filter taps
Space taps 2 pixels apart, offset by half a pixel
Bilinear filtering averages each group of 2x2 pixels



Floating-point Display

Not quite there yet
Not currently supported by shipping hardware

But coming soon!
http://www.cs.ubc.ca/~heidrich/Projects/HDRDisplay



Demo!



HDR Tools

HDRshop
Allows viewing and editing of .HDR format images

Diffuse and specular environment map convolutions

Available from www.debevec.org

OpenEXR
exrdisplay

Photoshop plug-in

Greg Ward’s tools
Photosphere (MacOS)

Can construct HDR images from photographs taken 
at multiple exposures



HDR Practicalities – FP Specials

In debugging a number of apps, we noticed many 
that came out “all black” or “all white”

Assumed a bug somewhere in our driver

Turns out the problem stems from implementation 
of floating point specials

NaN, +Inf, -Inf, etc.

Some competitor’s hw does not handle these like 
IEEE

So problems cropping up on GeForce



FP Specials

Where can you get a special?
In the shader

In the framebuffer

From constants, vertex attributes, or a texture

Due to blending!

Any time you do a calculation where a division 
takes place

For example, ray -> plane intersection, accumulating 
fog through a volume, often can result in divide-by-
zero when ray is parallel to plane

Result -> Inf



FP Specials - Inf

If you get +Inf or –Inf it will
Look white on screen for +Inf, black for -Inf

Propagate like crazy

Inf times any non-zero value is Inf, so convolution 
propagates specials

Inf times zero is NaN, which looks like black

NaN propagates even more powerfully



FP Specials – Especially Bad Case

One extremely sneaky Inf is caused by writing out 
a value out of range to an fp surface

If you write a value greater than MAX_FLOAT, you 
will get Inf

Even though it wasn’t Inf in the shader!

MAX_FLOAT in fp16 is only around 65505, very 
reasonable value

Be careful writing out world space (x,y,z) positions 
to fp, since overflow can easily happen

Clamping is the only solution for values that can 
go out of range

Adds some overhead, unfortunately



Conclusion

HDR lighting is finally here
Previous hardware either wasn’t fast enough or full 
featured enough

Don’t let fp specials trip you up
Non-obvious and difficult to debug



Questions?

Simon Green (sgreen@nvidia.com)

Cem Cebenoyan (cem@nvidia.com)


