
The OpenGL The OpenGL FramebufferFramebuffer Object Object
ExtensionExtension

Simon GreenSimon Green
NVIDIA CorporationNVIDIA Corporation

OverviewOverview

•• Why render to texture?Why render to texture?
•• PP--buffer / ARB render texture reviewbuffer / ARB render texture review
•• FramebufferFramebuffer object extensionobject extension
•• ExamplesExamples
•• Future directionsFuture directions

Why Render To Texture?Why Render To Texture?

•• Allows results of rendering to Allows results of rendering to framebufferframebuffer to to
be directly read as texturebe directly read as texture

•• Better performanceBetter performance
–– avoids copy from avoids copy from framebufferframebuffer to texture to texture

((glCopyTexSubImage2DglCopyTexSubImage2D))
–– uses less memory uses less memory –– only one copy of imageonly one copy of image
–– but driver may sometimes have to do copy internallybut driver may sometimes have to do copy internally

•• some hardware has separate texture and FB memorysome hardware has separate texture and FB memory
•• different internal representationsdifferent internal representations

•• ApplicationsApplications
–– dynamic textures dynamic textures –– procedurals, reflectionsprocedurals, reflections
–– multimulti--pass techniques pass techniques –– antianti--aliasing, motion blur, aliasing, motion blur,

depth of fielddepth of field
–– image processing effects (blurs etc.)image processing effects (blurs etc.)
–– GPGPU GPGPU –– provides feedback loopprovides feedback loop

WGL_ARB_pbufferWGL_ARB_pbuffer

•• Pixel buffersPixel buffers
•• Designed for offDesigned for off--screen renderingscreen rendering

–– Similar to windows, but nonSimilar to windows, but non--visiblevisible
•• Window system specific extensionWindow system specific extension
•• Select from an enumerated list of Select from an enumerated list of

available pixel formats usingavailable pixel formats using
–– ChoosePixelFormatChoosePixelFormat()()
–– DescribePixelFormatDescribePixelFormat()()

Problems with Problems with PBuffersPBuffers

•• Each Each pbufferpbuffer usually has its own OpenGL usually has its own OpenGL
contextcontext
–– (Assuming they have different pixel formats)(Assuming they have different pixel formats)
–– Can share texture objects, display lists between Can share texture objects, display lists between

pbufferspbuffers using using wglShareListswglShareLists()()
–– Painful to manage, causes lots of bugsPainful to manage, causes lots of bugs

•• Switching between Switching between pbufferspbuffers is expensiveis expensive
–– wglMakeCurrentwglMakeCurrent()() causes context switchcauses context switch

•• Each Each pbufferpbuffer has its own depth, stencil, aux has its own depth, stencil, aux
buffersbuffers
–– Cannot share depth buffers between Cannot share depth buffers between pbufferspbuffers

WGL_ARB_render_texture WGL_ARB_render_texture

•• Allows the color or depth buffer of a Allows the color or depth buffer of a pbufferpbuffer to to
be bound as a texturebe bound as a texture

–– BOOL BOOL wglBindTexImageARB(HPBUFFERARBwglBindTexImageARB(HPBUFFERARB hPbufferhPbuffer, , intint iBufferiBuffer

–– BOOL BOOL wglReleaseTexImageARB(HPBUFFERARBwglReleaseTexImageARB(HPBUFFERARB hPbufferhPbuffer, , intint iBufferiBuffer))

•• Window system specificWindow system specific
–– GLX version of specification was never definedGLX version of specification was never defined
–– MacOSMacOS X X -- APPLE_pixel_buffer APPLE_pixel_buffer

•• Texture format is determined by pixel format of Texture format is determined by pixel format of
pbufferpbuffer

•• Portable applications need to create a separate Portable applications need to create a separate
pbufferpbuffer for each for each renderablerenderable texturetexture

PbufferPbuffer TricksTricks

•• The front and back buffers of a doubleThe front and back buffers of a double--
buffered buffered pbufferpbuffer can be bound as separate can be bound as separate
texturestextures
glDrawBuffer(GL_FRONTglDrawBuffer(GL_FRONT);); // draw to front// draw to front
glDrawBuffer(GL_BACKglDrawBuffer(GL_BACK);); // draw to back// draw to back
// bind front and back buffers as textures// bind front and back buffers as textures
wglBindTexImageARB(pbufferwglBindTexImageARB(pbuffer, WGL_FRONT_LEFT_ARB);, WGL_FRONT_LEFT_ARB);
wglBindTexImageARB(pbufferwglBindTexImageARB(pbuffer, WGL_BACK_LEFT_ARB);, WGL_BACK_LEFT_ARB);

•• This gives you two buffers that you can switch This gives you two buffers that you can switch
between without incurring context switching between without incurring context switching
costcost

•• On systems that support multiple render On systems that support multiple render
targets (ARB_draw_buffers) you can also use targets (ARB_draw_buffers) you can also use
AUX buffersAUX buffers

Render To Texture And AntiRender To Texture And Anti--AliasingAliasing

•• Render to texture doesnRender to texture doesn’’t work with multit work with multi--
sample antisample anti--aliasingaliasing
–– current texture hardware isncurrent texture hardware isn’’t capable of reading t capable of reading

from a multifrom a multi--sampled buffersampled buffer
–– could be implemented in driver using copycould be implemented in driver using copy

•• Common problem with postCommon problem with post--processing effects processing effects
in gamesin games

•• Solution: create a normal multiSolution: create a normal multi--sampled sampled
pbufferpbuffer, and use , and use glCopyTexImage2DglCopyTexImage2D to copy to copy
from this to a texturefrom this to a texture
–– the copy performs the downthe copy performs the down--sampling automaticallysampling automatically

•• Also possible to do your own superAlso possible to do your own super--sample sample
antianti--aliasing in the applicationaliasing in the application
–– much more expensive than multimuch more expensive than multi--samplingsampling

AntiAnti--Aliasing with Post ProcessingAliasing with Post Processing

Without AA With AA

The The FramebufferFramebuffer Object ExtensionObject Extension

•• Specification finally published!Specification finally published!
•• Available in beta drivers from NVIDIAAvailable in beta drivers from NVIDIA
•• http://http://developer.nvidia.comdeveloper.nvidia.com

FramebufferFramebuffer Object AdvantagesObject Advantages

•• Only requires a single OpenGL contextOnly requires a single OpenGL context
–– switching between switching between framebuffersframebuffers is faster than is faster than

switching between switching between pbufferspbuffers ((wglMakeCurrent))
•• No need for complicated pixel format selectionNo need for complicated pixel format selection

–– format of format of framebufferframebuffer is determined by texture or is determined by texture or
renderbufferrenderbuffer formatformat

–– puts burden of finding compatible formats on puts burden of finding compatible formats on
developerdeveloper

•• More similar to Direct3D render target modelMore similar to Direct3D render target model
–– makes porting code easiermakes porting code easier

•• RenderbufferRenderbuffer images and texture images can images and texture images can
be shared among be shared among framebuffersframebuffers
–– e.g. share depth buffers between color targetse.g. share depth buffers between color targets
–– saves memorysaves memory

EXT_framebuffer_objectEXT_framebuffer_object

•• OpenGL OpenGL framebufferframebuffer is a collection of is a collection of
logical bufferslogical buffers
–– color, depth, stencil, accumulationcolor, depth, stencil, accumulation

•• FramebufferFramebuffer object extension provides object extension provides
a new mechanism for rendering to a new mechanism for rendering to
destinations other than those provided destinations other than those provided
by the window systemby the window system
–– window system independentwindow system independent

•• Destinations known as Destinations known as ““framebufferframebuffer--
attachable imagesattachable images””. Can be:. Can be:
–– offoff--screen buffers (screen buffers (RenderbuffersRenderbuffers))
–– texturestextures

FramebufferFramebuffer Object ArchitectureObject Architecture

Texture objectsFramebuffer object

Renderbuffer objects

Color attachment 0

Color attachment n

Depth attachment

Stencil attachment

Other state

...
Texture
image

Renderbuffer
image

TerminologyTerminology

•• RenderbufferRenderbuffer image image –– 2D array of pixels. Part 2D array of pixels. Part
of a of a renderbufferrenderbuffer object.object.

•• FramebufferFramebuffer--attachable image attachable image –– 2D array of 2D array of
pixels that can be attached to a pixels that can be attached to a framebufferframebuffer. .
Texture images and Texture images and renderbufferrenderbuffer images are images are
examples.examples.

•• Attachment point Attachment point –– State that references a State that references a
framebufferframebuffer--attachable image. One each for attachable image. One each for
color, depth and stencil buffer of a color, depth and stencil buffer of a
framebufferframebuffer..

•• Attach Attach –– the act of connecting one object to the act of connecting one object to
another. Similar to another. Similar to ““bindbind””..

•• FramebufferFramebuffer attachment completenessattachment completeness
•• FramebufferFramebuffer completenesscompleteness

FramebuffersFramebuffers and and RenderbuffersRenderbuffers

•• Introduces two new OpenGL objects:Introduces two new OpenGL objects:
•• ““FramebufferFramebuffer”” (FBO)(FBO)

–– collection of collection of framebufferframebuffer--attachable images attachable images
(e.g. color, depth, stencil)(e.g. color, depth, stencil)

–– plus state defining where output of GL plus state defining where output of GL
rendering is directedrendering is directed

–– equivalent to window system equivalent to window system ““drawabledrawable””
•• ““RenderbufferRenderbuffer”” (RB)(RB)

–– contains a simple 2D imagecontains a simple 2D image
•• no no mipmapsmipmaps, , cubemapcubemap faces etc.faces etc.

–– stores pixel data resulting from renderingstores pixel data resulting from rendering
–– cannot be used as texturescannot be used as textures

FramebufferFramebuffer ObjectsObjects

•• When a When a framebufferframebuffer object is bound its object is bound its
attached images are the source and attached images are the source and
destination for fragment operationsdestination for fragment operations
–– Color and depth texturesColor and depth textures

•• Supports multiple color attachments for MRTSupports multiple color attachments for MRT
–– Color, depth or stencil Color, depth or stencil renderbuffersrenderbuffers

FramebufferFramebuffer Object APIObject API

void void GenFramebuffersEXT(sizeiGenFramebuffersEXT(sizei n, n, uintuint **framebuffersframebuffers););
void void DeleteFramebuffersEXT(sizeiDeleteFramebuffersEXT(sizei n,n,

const const uintuint **framebuffersframebuffers););

booleanboolean IsFramebufferEXT(uintIsFramebufferEXT(uint framebufferframebuffer););

void void BindFramebufferEXT(enumBindFramebufferEXT(enum target, target, uintuint framebufferframebuffer););

enumenum CheckFramebufferStatusEXT(enumCheckFramebufferStatusEXT(enum target); target);

FramebufferFramebuffer Object APIObject API

void FramebufferTexture1DEXT(enum target, void FramebufferTexture1DEXT(enum target, enumenum attachment, attachment,
enumenum textargettextarget, , uintuint texture, texture, intint level);level);

void FramebufferTexture2DEXT(enum target, void FramebufferTexture2DEXT(enum target, enumenum attachment, attachment,
enumenum textargettextarget, , uintuint texture, texture, intint level);level);

void FramebufferTexture3DEXT(enum target, void FramebufferTexture3DEXT(enum target, enumenum attachment, attachment,
enumenum textargettextarget, , uintuint texture, texture, intint level, level, intint zoffsetzoffset););

void void FramebufferRenderbufferEXT(enumFramebufferRenderbufferEXT(enum target, target, enumenum
attachment, attachment, enumenum renderbuffertargetrenderbuffertarget, , uintuint
renderbufferrenderbuffer););

void void GetFramebufferAttachmentParameterivEXT(enumGetFramebufferAttachmentParameterivEXT(enum target, target,
enumenum attachment, attachment, enumenum pnamepname, , intint **paramsparams););

void void GenerateMipmapEXT(enumGenerateMipmapEXT(enum target); target);

Managing Managing FBOsFBOs and and RenderbuffersRenderbuffers

•• Creating and destroying Creating and destroying FBOsFBOs (and (and
RenderbuffersRenderbuffers) is easy) is easy -- similar to similar to
texture objectstexture objects
void void GenFramebuffersEXTGenFramebuffersEXT((sizeisizei n, n, uintuint **framebuffersframebuffers););
void void DeleteFramebuffersEXTDeleteFramebuffersEXT((sizeisizei n,n,

const const uintuint **framebuffersframebuffers););

void void BindFramebufferEXTBindFramebufferEXT((enumenum target, target, uintuint
framebufferframebuffer););

booleanboolean IsFramebufferEXTIsFramebufferEXT((uintuint framebufferframebuffer););

•• Can also check if a given identifier is a Can also check if a given identifier is a
framebufferframebuffer object (rarely used)object (rarely used)

Binding an FBOBinding an FBO
void void BindFramebufferEXTBindFramebufferEXT((enumenum target, target, uintuint framebufferframebuffer););

•• Makes given FBO currentMakes given FBO current
–– all GL operations occur on attached imagesall GL operations occur on attached images

•• targettarget must be FRAMEBUFFER_EXTmust be FRAMEBUFFER_EXT
•• framebufferframebuffer is FBO identifieris FBO identifier

–– if if framebufferframebuffer==0, GL operations operate on window==0, GL operations operate on window--
system provided system provided framebufferframebuffer (i.e. the window).(i.e. the window).
This is the default state.This is the default state.

•• Set of state that can change on a Set of state that can change on a framebufferframebuffer
bind:bind:
–– AUX_BUFFERS, MAX_DRAW_BUFFERS, STEREO, AUX_BUFFERS, MAX_DRAW_BUFFERS, STEREO,

SAMPLES, X_BITS, DOUBLE_BUFFER and a few SAMPLES, X_BITS, DOUBLE_BUFFER and a few
moremore

Attaching Textures to a Attaching Textures to a FramebufferFramebuffer
void FramebufferTexture2DEXT(enum target, void FramebufferTexture2DEXT(enum target, enumenum

attachment, attachment, enumenum textargettextarget, , uintuint texture, texture, intint
level);level);

•• Attaches image from a texture object to one of the logical Attaches image from a texture object to one of the logical
buffers of the currently bound buffers of the currently bound framebufferframebuffer

•• targettarget must be FRAMEBUFFER_EXTmust be FRAMEBUFFER_EXT
•• attachmentattachment is one of:is one of:

–– COLOR_ATTACHMENT0_EXT ... COLOR_ATTACHMENT0_EXT ... COLOR_ATTACHMENTn_EXTCOLOR_ATTACHMENTn_EXT, ,
DEPTH_ATTACHMENT_EXT, STENCIL_ATTACHMENT_EXT DEPTH_ATTACHMENT_EXT, STENCIL_ATTACHMENT_EXT

•• textargettextarget must be one of:must be one of:
–– TEXTURE_2D, TEXTURE_RECTANGLE, TEXTURE_2D, TEXTURE_RECTANGLE,

TEXTURE_CUBE_MAP_POSITIVE_X etc.TEXTURE_CUBE_MAP_POSITIVE_X etc.
•• level level is the is the mipmapmipmap level of the texture to attachlevel of the texture to attach
•• texture texture is the texture object to attachis the texture object to attach

–– if if texturetexture==0, the image is detached from the ==0, the image is detached from the framebufferframebuffer
•• Other texture dimensions are similarOther texture dimensions are similar

–– for 3D textures, for 3D textures, zz--offset offset specifies slicespecifies slice

RenderbufferRenderbuffer APIAPI

void void GenRenderbuffersEXT(sizeiGenRenderbuffersEXT(sizei n, n, uintuint **renderbuffersrenderbuffers););

void void DeleteRenderbuffersEXT(sizeiDeleteRenderbuffersEXT(sizei n,n,
const const uintuint **renderbuffersrenderbuffers););

booleanboolean IsRenderbufferEXT(uintIsRenderbufferEXT(uint renderbufferrenderbuffer););

void void BindRenderbufferEXT(enumBindRenderbufferEXT(enum target, target, uintuint renderbufferrenderbuffer););

void void RenderbufferStorageEXT(enumRenderbufferStorageEXT(enum target,target,
enumenum internalformatinternalformat, , sizeisizei width, width, sizeisizei height);height);

void void GetRenderbufferParameterivEXT(enumGetRenderbufferParameterivEXT(enum target,target,
enumenum pnamepname, , intint* * paramsparams););

Defining Defining RenderBufferRenderBuffer StorageStorage
void void RenderbufferStorageEXTRenderbufferStorageEXT((enumenum target,target,

enumenum internalformatinternalformat, , sizeisizei width, width, sizeisizei height);height);

•• Defines format and dimensions of a Defines format and dimensions of a
RenderbufferRenderbuffer
–– similar to similar to TexImageTexImage call, but without image datacall, but without image data
–– can read and write data using Read/can read and write data using Read/DrawPixelsDrawPixels etc.etc.

•• targettarget must be RENDERBUFFER_EXTmust be RENDERBUFFER_EXT
•• internalformatinternalformat can be normal texture format can be normal texture format

(e.g. GL_RGBA8, GL_DEPTH_COMPONENT24) (e.g. GL_RGBA8, GL_DEPTH_COMPONENT24)
or:or:
–– STENCIL_INDEX1_EXTSTENCIL_INDEX1_EXT
–– STENCIL_INDEX4_EXT STENCIL_INDEX4_EXT
–– STENCIL_INDEX8_EXT STENCIL_INDEX8_EXT
–– STENCIL_INDEX16_EXT STENCIL_INDEX16_EXT

Attaching Attaching RenderbuffersRenderbuffers to a to a FramebufferFramebuffer
void void FramebufferRenderbufferEXT(enumFramebufferRenderbufferEXT(enum target,target,

enumenum attachment, attachment, enumenum renderbuffertargetrenderbuffertarget,,
uintuint renderbufferrenderbuffer););

•• Attaches given Attaches given renderbufferrenderbuffer as one of the logical buffers as one of the logical buffers
of the currently bound of the currently bound framebufferframebuffer

•• targettarget must be FRAMEBUFFER_EXT must be FRAMEBUFFER_EXT
•• attachmentattachment is one of:is one of:

–– COLOR_ATTACHMENT0_EXT ... COLOR_ATTACHMENT0_EXT ...
COLOR_ATTACHMENTn_EXTCOLOR_ATTACHMENTn_EXT

•• Maximum number of color attachments implementation Maximum number of color attachments implementation
dependent dependent -- query MAX_COLOR_ATTACHMENTS_EXTquery MAX_COLOR_ATTACHMENTS_EXT

–– DEPTH_ATTACHMENT_EXT DEPTH_ATTACHMENT_EXT
–– STENCIL_ATTACHMENT_EXT STENCIL_ATTACHMENT_EXT

•• renderbuffertargetrenderbuffertarget must be RENDERBUFFER_EXT must be RENDERBUFFER_EXT
•• renderbufferrenderbuffer is a is a renderbufferrenderbuffer idid

Generating Generating MipmapsMipmaps

void void GenerateMipmapEXTGenerateMipmapEXT((enumenum target);target);

•• Automatically generates Automatically generates mipmapsmipmaps for for
texture image attached to texture image attached to targettarget

•• Generates same images as Generates same images as
GL_SGIS_generate_mipmapGL_SGIS_generate_mipmap extensionextension
–– filtering is undefined, most likely simple 2x2 filtering is undefined, most likely simple 2x2

box filterbox filter
•• Implemented as new entry point for Implemented as new entry point for

complicated reasons (see spec).complicated reasons (see spec).

FramebufferFramebuffer CompletenessCompleteness

•• FramebufferFramebuffer is complete if all attachments are is complete if all attachments are
consistentconsistent
–– texture formats make sense for attachment pointstexture formats make sense for attachment points

•• i.e. doni.e. don’’t try and attach a depth texture to a color t try and attach a depth texture to a color
attachmentattachment

–– all attached images must have the same width and all attached images must have the same width and
heightheight

–– all images attached to COLOR_ATTACHMENT0_EXT all images attached to COLOR_ATTACHMENT0_EXT
-- COLOR_ATTACHMENTn_EXTCOLOR_ATTACHMENTn_EXT must have same must have same
formatformat

•• If not complete, If not complete, glBeginglBegin will generate error will generate error
INVALID_FRAMEBUFFER_OPERATIONINVALID_FRAMEBUFFER_OPERATION

Checking Checking FramebufferFramebuffer StatusStatus
enumenum CheckFramebufferStatusEXTCheckFramebufferStatusEXT((enumenum target);target);

•• Should always be called after setting up Should always be called after setting up FBOsFBOs
•• Returns Returns enumenum indicating why indicating why framebufferframebuffer is incomplete:is incomplete:

–– FRAMEBUFFER_COMPLETEFRAMEBUFFER_COMPLETE
–– FRAMEBUFFER_INCOMPLETE_ATTACHMENTFRAMEBUFFER_INCOMPLETE_ATTACHMENT
–– FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT
–– FRAMEBUFFER_INCOMPLETE_DUPLICATE_ATTACHMENT FRAMEBUFFER_INCOMPLETE_DUPLICATE_ATTACHMENT
–– FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT
–– FRAMEBUFFER_INCOMPLETE_FORMATS_EXT FRAMEBUFFER_INCOMPLETE_FORMATS_EXT
–– FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT
–– FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT
–– FRAMEBUFFER_UNSUPPORTEDFRAMEBUFFER_UNSUPPORTED
–– FRAMEBUFFER_STATUS_ERRORFRAMEBUFFER_STATUS_ERROR

•• Completeness is implementationCompleteness is implementation--dependentdependent
–– if result is if result is ““FRAMEBUFFER_UNSUPPORTEDFRAMEBUFFER_UNSUPPORTED””, application , application

should try different format combinations until one should try different format combinations until one
succeedssucceeds

FBO Performance TipsFBO Performance Tips

•• DonDon’’t create and destroy t create and destroy FBOsFBOs every every
frameframe

•• Try to avoid modifying textures used as Try to avoid modifying textures used as
rendering destinations using rendering destinations using TexImageTexImage, ,
CopyTexImageCopyTexImage etc.etc.

FBO Usage ScenariosFBO Usage Scenarios

•• FBO allows several ways of switching between FBO allows several ways of switching between
rendering destinationsrendering destinations

•• In order of increasing performance:In order of increasing performance:
–– Multiple Multiple FBOsFBOs

•• create a separate FBO for each texture you want to create a separate FBO for each texture you want to
render torender to

•• switch using switch using BindFramebufferBindFramebuffer()()
–– can be 2x faster than can be 2x faster than wglMakeCurrentwglMakeCurrent()() in beta NVIDIA in beta NVIDIA

driversdrivers
–– Single FBO, multiple texture attachmentsSingle FBO, multiple texture attachments

•• textures should have same format and dimensionstextures should have same format and dimensions
•• use use FramebufferTextureFramebufferTexture()() to switch between to switch between

texturestextures
–– Single FBO, multiple texture attachmentsSingle FBO, multiple texture attachments

•• attach textures to different color attachmentsattach textures to different color attachments
•• use use glDrawBufferglDrawBuffer()() to switch rendering to different to switch rendering to different

color attachmentscolor attachments

Simple FBO ExampleSimple FBO Example

#define CHECK_FRAMEBUFFER_STATUS() \
{ \
GLenum status; \
status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); \
switch(status) { \
case GL_FRAMEBUFFER_COMPLETE_EXT: \
break; \

case GL_FRAMEBUFFER_UNSUPPORTED_EXT: \
/* choose different formats */ \
break; \

default: \
/* programming error; will fail on all hardware */ \
assert(0); \

} \
}

Simple FBO ExampleSimple FBO Example
GLuint fb, depth_rb, tex;

// create objects
glGenFramebuffersEXT(1, &fb); // frame buffer
glGenRenderbuffersEXT(1, &depth_rb); // render buffer
glGenTextures(1, &tex); // texture
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

// initialize texture
glBindTexture(GL_TEXTURE_2D, tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0,

GL_RGBA, GL_UNSIGNED_BYTE, NULL);
// (set texture parameters here)

// attach texture to framebuffer color buffer
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, tex, 0);

Simple FBO ExampleSimple FBO Example
// initialize depth renderbuffer
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT,

GL_DEPTH_COMPONENT24, width, height);

// attach renderbuffer to framebuffer depth buffer
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT,

GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT,
depth_rb);

CHECK_FRAMEBUFFER_STATUS();
...

// render to the FBO
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
// (draw something here, rendering to texture)

// render to the window, using the texture
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
glBindTexture(GL_TEXTURE_2D, tex);

Future DirectionsFuture Directions

•• Currently an EXT extensionCurrently an EXT extension
–– will be promoted to an ARB extension once will be promoted to an ARB extension once

the design is proventhe design is proven
•• Got feedback?Got feedback?

–– Give it to the OpenGL ARB!Give it to the OpenGL ARB!
•• Future extensionsFuture extensions

–– Render to vertex attributeRender to vertex attribute
•• likely built on top of likely built on top of RenderbuffersRenderbuffers

–– Format groupsFormat groups
•• like pixel formats, defines groups of formats that like pixel formats, defines groups of formats that

work together for a given implementationwork together for a given implementation
–– Multisampling, accumulation buffer supportMultisampling, accumulation buffer support

ThanksThanks

•• Jeff Juliano, Mike Strauss and the rest Jeff Juliano, Mike Strauss and the rest
of the NVIDIA OpenGL driver teamof the NVIDIA OpenGL driver team

•• Jeremy Jeremy SandmelSandmel, Jeff Juliano and the , Jeff Juliano and the
rest of the ARB rest of the ARB SuperbuffersSuperbuffers working working
groupgroup

	The OpenGL Framebuffer Object Extension
	Overview
	Why Render To Texture?
	WGL_ARB_pbuffer
	Problems with PBuffers
	WGL_ARB_render_texture
	Pbuffer Tricks
	Render To Texture And Anti-Aliasing
	Anti-Aliasing with Post Processing
	The Framebuffer Object Extension
	Framebuffer Object Advantages
	EXT_framebuffer_object
	Framebuffer Object Architecture
	Terminology
	Framebuffers and Renderbuffers
	Framebuffer Objects
	Framebuffer Object API
	Framebuffer Object API
	Managing FBOs and Renderbuffers
	Binding an FBO
	Attaching Textures to a Framebuffer
	Renderbuffer API
	Defining RenderBuffer Storage
	Attaching Renderbuffers to a Framebuffer
	Generating Mipmaps
	Framebuffer Completeness
	Checking Framebuffer Status
	FBO Performance Tips
	FBO Usage Scenarios
	Simple FBO Example
	Simple FBO Example
	Simple FBO Example
	Future Directions
	Thanks

