GameDevelopers <
MVIDIA.

Conference

The OpenGL Framebuffer Object
Extension

Simon Green
NVIDIA Corporation

GameDevelopers <
RVIDIA.

Conference

Overview

e \Why render to texture?

e P-puffer / ARB render texture review
e Framebuffer object extension

e Examples

e Future directions

GameDevelopers <
Conference BVIDIA.

Why Render To Texture?

= Allows results of rendering to framebuffer to
be directly read as texture

e Better performance

— avoids copy from framebuffer to texture
(g1CopyTexSublmage2D)

— uses less memory —only one copy of image
— but driver may sometimes have to do copy internally
« some hardware has separate texture and FB memory
« different internal representations
e Applications
— dynamic textures — procedurals, reflections

— multi-pass techniques — anti-aliasing, motion blur,
depth of field

— image processing effects (blurs etc.)
— GPGPU - provides feedback loop

GameDevelopers <
Conference BVIDIA.

WGL_ARB pbuffer

e Pixel buffers

e Designed for off-screen rendering
— Similar to windows, but non-visible

e Window system specific extension

e Select from an enumerated list of

available pixel formats using
— ChoosePixelFormat()
— DescribePixelFormat()

GameDevelopers <
RVIDIA.

Conference

Problems with PBuffers

e Each pbuffer usually has its own OpenGL
context
— (Assuming they have different pixel formats)

— Can share texture objects, display lists between
pbuffers using wglShareLists()

— Painful to manage, causes lots of bugs

e Switching between pbuffers is expensive
— wglIMakeCurrent() causes context switch

e Each pbuffer has its own depth, stencil, aux
buffers
— Cannot share depth buffers between pbuffers

GameDevelopers <
Conference BVIDIA.

WGL ARB render texture

e Allows the color or depth buffer of a pbuffer to
be bound as a texture
— BOOL wglBindTexImageARB(HPBUFFERARB hPbuffer, int iBuffer

— BOOL wglReleaseTexImageARB(HPBUFFERARB hPbuffer, int iBuffer)

e Window system specific

— GLX version of specification was never defined
— MacOS X - APPLE_pixel buffer

e Texture format is determined by pixel format of
pbuffer

g T

e Portable applications need to create a separate a
/
/

e
_

pbuffer for each renderable texture

GameDevelopers <
RVIDIA.

Conference

Pbuffer Tricks

e The front and back buffers of a double-
buffered pbuffer can be bound as separate
textures

glDrawBuffer(GL_FRONT); // draw to front
glDrawBuffer(GL_BACK); // draw to back

// bind front and back buffers as textures
wglBindTexImageARB(pbuffer, WGL_FRONT_LEFT_ARB);
wgIBindTexImageARB(pbuffer, WGL BACK LEFT _ARB);

e This gives you two buffers that you can switch
between without incurring context switching

cost

e On systems that support multiple render
targets (ARB_draw_buffers) you can also use
AUX buffers

GameDevelopers <
Conference BVIDIA.

Render To Texture And Anti-Aliasing

e Render to texture doesn’t work with multi-
sample anti-aliasing

— current texture hardware isn't capable of reading
from a multi-sampled buffer

— could be implemented in driver using copy

e Common problem with post-processing effects
In games

e Solution: create a normal multi-sampled
pbuffer, and use glCopyTexImage2D t0 copy
from this to a texture
— the copy performs the down-sampling automatically

e Also possible to do your own super-sample ‘?‘*
[1’
/

e
_

anti-aliasing in the application
— much more expensive than multi-sampling

GameDevelopers <
Conference NVIDIA.

Anti-Aliasing with Post Processing

Without AA With AA

Ml Anti-Aliasing with Post Processing |Z||E|S| Ml Anti-Aliasing with Post Processing |Z||E|S|

GameDevelopers <
Conference NVIDIA.

The Framebuffer Object Extension

e Specification finally published!
e Avallable in beta drivers from NVIDIA
e http://developer.nvidia.com

GameDevelopers <
RVIDIA.

Conference

Framebuffer Object Advantages

e Only requires a single OpenGL context

— switching between framebuffers is faster than
switching between pbuffers (wglIMakeCurrent)

e No need for complicated pixel format selection

— format of framebuffer is determined by texture or
renderbuffer format

— puts burden of finding compatible formats on
developer

e More similar to Direct3D render target model
— makes porting code easier

e Renderbuffer images and texture images can
be shared among framebuffers
— e.g. share depth buffers between color targets
— saves memaory

GameDevelopers

Conference

EXT framebuffer object

e OpenGL framebuffer is a collection of
logical buffers

— color, depth, stencil, accumulation
e Framebuffer object extension provides
a new mechanism for rendering to

destinations other than those provided
by the window system

— window system independent
e Destinations known as “framebuffer-
attachable images™. Can be:
— off-screen buffers (Renderbuffers)
— textures

<

RVIDIA.

B 2 &
A

GameDevelopers &2

Conference

RVIDIA.
Framebuffer Object Architecture
Framebuffer object Texture objects
Texture
image

[
[

\ 4

A 4

GameDevelopers <
RVIDIA.

Conference

Terminology

e Renderbuffer image - 2D array of pixels. Part
of a renderbuffer object.

e Framebuffer-attachable image - 2D array of
pixels that can be attached to a framebuffer.
Texture images and renderbuffer images are
examples.

e Attachment point - State that references a
framebuffer-attachable image. One each for
color, depth and stencil buffer of a
framebuffer.

e Attach - the act of connecting one object to
another. Similar to “bind™.

e Framebuffer attachment completeness
e Framebuffer completeness

GameDevelopers <
RVIDIA.

Conference

Framebuffers and Renderbuffers

e |Introduces two new OpenGL objects:

e “Framebuffer” (FBO)

— collection of framebuffer-attachable images
(e.g. color, depth, stencil)

— plus state defining where output of GL
rendering is directed

— equivalent to window system “drawable”

e “Renderbuffer” (RB)

— contains a simple 2D image
* N0 mipmaps, cubemap faces etc.

— stores pixel data resulting from rendering
— cannot be used as textures

GameDevelopers

Conference

Framebuffer Objects

e \When a framebuffer object is bound its
attached images are the source and
destination for fragment operations

— Color and depth textures
e Supports multiple color attachments for MRT

— Color, depth or stencil renderbuffers

@’-’:“J

RVIDIA.

GameDevelopers <

Conference =

RVIDIA.

Framebuffer Object API

void GenFramebufferseXT(sizei n, uint *framebuffers);

void DeleteFramebufferseXT(sizel n,
const uint *framebuffers);

boolean IsFramebufferEXT(uint framebuffer);
void BindFramebufferEXT(enum target, uint framebuffer);

enum CheckFramebufferStatusEXT(enum target);

GameDevelopers <
RVIDIA.

Conference

Framebuffer Object API

void FramebufferTexturelDEXT(enum target, enum attachment,
enum textarget, uint texture, iInt level);

void FramebufferTexture2DEXT(enum target, enum attachment,
enum textarget, uint texture, Int level);

void FramebufferTexture3DEXT(enum target, enum attachment,
enum textarget, uint texture, Int level, int zoffset);

void FramebufferRenderbufferEXT(enum target, enum
attachment, enum renderbuffertarget, uint
renderbuffer);

void GetFramebufferAttachmentParameterivEXT(enum target,
enum attachment, enum pname, Int *params);

void GenerateMipmapEXT(enum target);

GameDevelopers <
Conference BVIDIA.

Managing FBOs and Renderbuffers

e Creating and destroying FBOs (and
Renderbuffers) iIs easy - similar to
texture objects

void GenFramebufferseXT(sizeir n, uint *framebuffers);

void DeleteFramebufferseXT(sizeil n,
const uint *framebuffers);

void BindFramebufferEXT(enum target, uint
framebuffer);

e Can also check if a given identifier Is a
framebuffer object (rarely used)

boolean IsFramebufferEXT(uint framebuffer);

GameDevelopers <
Conference T

Binding an FBO

void BindFramebufferEXT(enum target, uint framebuffer);

e Makes given FBO current
— all GL operations occur on attached images

e target must be FRAMEBUFFER EXT

e framebuffer is FBO identifier

— if framebuffer==0, GL operations operate on window-
system provided framebuffer (i.e. the window).
This is the default state.

e Set of state that can change on a framebuffer
bind:
— AUX_BUFFERS, MAX_DRAW_BUFFERS, STEREO,

SAMPLES, X_BITS, DOUBLE_BUFFER and a few
more

GameDevelopers <
RVIDIA.

Conference

Attaching Textures to a Framebuffer

void FramebufferTexture2DEXT(enum target, enum
attachment, enum textarget, uint texture, int
level);

e Attaches image from a texture object to one of the logical
buffers of the currently bound framebuffer

e target must be FRAMEBUFFER EXT
e attachment is one of:

— COLOR_ATTACHMENTO_EXT ... COLOR_ATTACHMENTN_EXT,
DEPTH_ATTACHMENT_EXT, STENCIL_ATTACHMENT_EXT

e textarget must be one of:

— TEXTURE_2D, TEXTURE_RECTANGLE,
TEXTURE_CUBE_MAP_POSITIVE_X etc.

e level is the mipmap level of the texture to attach
e texture is the texture object to attach

— if texture==0, the image is detached from the framebuffer
e QOther texture dimensions are similar

— for 3D textures, z-offset specifies slice

GameDevelopers <
Conference NVIDIA.

Renderbuffer API

void GenRenderbufferseXT(sizei n, uint *renderbuffers);

void DeleteRenderbufferseXT(sizeil n,
const uint *renderbuffers);

boolean IsRenderbufferEXT(uint renderbuffer);
void BindRenderbufferEXT(enum target, uint renderbuffer);

void RenderbufferStorageEXT(enum target,
enum internalformat, sizei width, sizei height);

voild GetRenderbufferParameterivEXT(enum target,
enum pname, Int* params);

GameDevelopers <
Conference BVIDIA.

Defining RenderBuffer Storage

void RenderbufferStorageEXT(enum target,
enum internalformat, sizeir width, sizeil height);

e Defines format and dimensions of a
Renderbuffer
— similar to Texlmage call, but without image data
— can read and write data using Read/DrawPixels etc.

e target must be RENDERBUFFER_EXT

e Internalformat can be normal texture format
(e.g. GL_RGBAS8, GL_DEPTH_COMPONENT24)
or:

— STENCIL_INDEX1_EXT
— STENCIL_INDEX4 EXT
— STENCIL_INDEX8 EXT
— STENCIL_INDEX16 EXT

GameDevelopers <
RVIDIA.

Conference

Attaching Renderbuffers to a Framebuffer

void FramebufferRenderbufferEXT(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

e Attaches given renderbuffer as one of the logical buffers
of the currently bound framebuffer

e target must be FRAMEBUFFER_EXT

e attachment is one of;:

— COLOR_ATTACHMENTO_EXT ...
COLOR_ATTACHMENTN_EXT

« Maximum number of color attachments implementation
dependent - query MAX COLOR_ATTACHMENTS_EXT

— DEPTH_ATTACHMENT_EXT
— STENCIL_ATTACHMENT_EXT
e renderbuffertarget must be RENDERBUFFER_EXT

e renderbuffer is a renderbuffer id

GameDevelopers <

Conference ﬁVII.)Ih.

Generating Mipmaps
voild GenerateMipmapEXT(enum target);

e Automatically generates mipmaps for
texture image attached to target

e Generates same images as
GL_SGIS generate _mipmap extension

— filtering is undefined, most likely simple 2x2
box filter

e Implemented as new entry point for
complicated reasons (see spec).

GameDevelopers

Conference

Framebuffer Completeness

 Framebuffer is complete if all attachments are
consistent

— texture formats make sense for attachment points

e i.e.don’t try and attach a depth texture to a color
attachment

— all attached images must have the same width and
height
— all images attached to COLOR_ATTACHMENTO_EXT
- COLOR_ATTACHMENTN_EXT must have same
format
e If not complete, giBegin will generate error

INVALID FRAMEBUFFER_OPERATION

<

RVIDIA.

GameDevelopers <
RVIDIA.

Conference

Checking Framebuffer Status

enum CheckFramebufferStatusEXT(enum target);

e Should always be called after setting up FBOs

e Returns enum indicating why framebuffer is incomplete:
— FRAMEBUFFER_COMPLETE
— FRAMEBUFFER_INCOMPLETE_ATTACHMENT
— FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT
—~ FRAMEBUFFER_INCOMPLETE_DUPLICATE_ATTACHMENT
—~ FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT
— FRAMEBUFFER_INCOMPLETE_FORMATS_EXT
—~ FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT
— FRAMEBUFFER_INCOMPLETE_READ BUFFER_EXT
- FRAMEBUFFER_UNSUPPORTED
— FRAMEBUFFER_STATUS ERROR

e Completeness is implementation-dependent

— if result is “FRAMEBUFFER_UNSUPPORTED”, application
should try different format combinations until one
succeeds

GameDevelopers <
RVIDIA.

Conference

FBO Performance Tips

e Don’t create and destroy FBOs every
frame

e Try to avoid modifying textures used as
rendering destinations using Texlmage,
CopyTexlimage etc.

GameDevelopers <
RVIDIA.

Conference

FBO Usage Scenarios

« FBO allows several ways of switching between
rendering destinations

e |n order of increasing performance:

— Multiple FBOs

e Create a separate FBO for each texture you want to
render to

« switch using BindFramebuffer()

— can be 2x faster than wgIMakeCurrent() in beta NVIDIA
drivers

— Single FBO, multiple texture attachments

o textures should have same format and dimensions
* use FramebufferTexture() to switch between
textures
— Single FBO, multiple texture attachments
e attach textures to different color attachments

 use glDrawBuffer() to switch rendering to different
color attachments

GameDevelopers <
Conference AVIDIA.

Simple FBO Example

#define CHECK FRAMEBUFFER_STATUS(Q \
{\
GLenum status; \
status = glCheckFramebufferStatusEXT(GL FRAMEBUFFER_EXT); \
switch(status) { \
case GL_FRAMEBUFFER_COMPLETE_EXT: \
break; \
case GL_FRAMEBUFFER_UNSUPPORTED EXT: \
/* choose different formats */ \
break; \
default: \
/* programming error; will fail on all hardware */ \
assert(0); \

3\

GameDevelopers <
RVIDIA.

Conference

Simple FBO Example

GLuint fb, depth_rb, tex;

// create objects

glGenFramebuffersexXT(l, &fb); // frame buffer
glGenRenderbufferseEXT(1, &depth_rb); // render buffer
glGenTextures(l, &tex); // texture

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

// initialize texture

glBindTexture(GL_TEXTURE_2D, tex);

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA8, width, height, O,
GL RGBA, GL _UNSIGNED BYTE, NULL);

// (set texture parameters here)

// attach texture to framebuffer color buffer

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHMENTO_EXT, GL_TEXTURE 2D, tex, 0);

GameDevelopers <
RVIDIA.

Conference

Simple FBO Example

// initialize depth renderbuffer
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);

glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT,
GL_DEPTH_COMPONENT24, width, height);

// attach renderbuffer to framebuffer depth buffer

glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_ EXT,
GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT,
depth_rb);

CHECK FRAMEBUFFER_STATUSQ);

// render to the FBO
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
// (draw something here, rendering to texture)

// render to the window, using the texture
gIBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
BindTexture(GL _TEXTURE 2D, tex);

GameDevelopers <
Conference BVIDIA.

Future Directions

e Currently an EXT extension

— will be promoted to an ARB extension once
the design is proven

e Got feedback?
— Give it to the OpenGL ARB!

e Future extensions

— Render to vertex attribute
 likely built on top of Renderbuffers

— Format groups

 like pixel formats, defines groups of formats that
work together for a given implementation

— Multisampling, accumulation buffer support J

GameDevelopers <
RVIDIA.

Conference

Thanks

e Jeff Juliano, Mike Strauss and the rest
of the NVIDIA OpenGL driver team

e Jeremy Sandmel, Jeff Juliano and the
rest of the ARB Superbuffers working
group

	The OpenGL Framebuffer Object Extension
	Overview
	Why Render To Texture?
	WGL_ARB_pbuffer
	Problems with PBuffers
	WGL_ARB_render_texture
	Pbuffer Tricks
	Render To Texture And Anti-Aliasing
	Anti-Aliasing with Post Processing
	The Framebuffer Object Extension
	Framebuffer Object Advantages
	EXT_framebuffer_object
	Framebuffer Object Architecture
	Terminology
	Framebuffers and Renderbuffers
	Framebuffer Objects
	Framebuffer Object API
	Framebuffer Object API
	Managing FBOs and Renderbuffers
	Binding an FBO
	Attaching Textures to a Framebuffer
	Renderbuffer API
	Defining RenderBuffer Storage
	Attaching Renderbuffers to a Framebuffer
	Generating Mipmaps
	Framebuffer Completeness
	Checking Framebuffer Status
	FBO Performance Tips
	FBO Usage Scenarios
	Simple FBO Example
	Simple FBO Example
	Simple FBO Example
	Future Directions
	Thanks

